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The overarching goal of this research was to examine humans’ subjective and 

physiological responses to small, high luminance light sources in outdoor nighttime 

environments. Currently, discomfort glare is rarely calculated in lighting practice (Remaking 

Cities Institute (RCI) 2011), partly, because it is not known which metric predicts glare most 

accurately in the given application.   

This dissertation describes a parametric experiment evaluating the effects of three glare 

source luminances (20,000; 205,000; 750,000 cd/m2), two source positions (0°, 10°), two source 

sizes (10-5, 10-4 sr), and three background luminances (0.03; 0.3; 1 cd/m2) on the subjective 

measure of perceived glare (a seven-point rating scale) and two objective measures (relative 

pupil size (RPS) and electromyographic (EMG) recordings of the muscles around the eyes). 

Subjective responses and predictions by four metrics (the outdoor sports and area lighting metric 

(CIE 112-1994), the motor vehicle lighting metric (Schmidt-Clausen and Bindels 1974), a 

combination of two metrics by Bullough et al. (2008, 2011), and the Unified Glare Rating (UGR) 

small source extension (CIE 146, 147-2002)) were correlated to determine which metric predicts 

discomfort glare best in the tested ranges. Fifty-six participants were tested at Musco Sports 

Lighting in an apparatus constructed specifically for this experiment and fully controlled through 

custom software.  
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Repeated-measures Analysis of Variance was applied to subjective and RPS data; one of 

the results showed that when background luminance decreases, the RPS increases (F = 390.94, df 

= 2, p < 0.0001). The EMG data were not analyzed due to problems with data acquisition that 

resulted in partial data incompleteness, however, insights gained are discussed. The correlation 

analysis showed that the UGR small source extension correlated best with subjective responses (r 

= 0.879, p < 0.0001). 
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CHAPTER 1 - INTRODUCTION 

A problem well stated is a problem half solved. 
-Charles Kettering 

 
Glare is a condition of vision in which there is a feeling of discomfort and/or a reduction 

in visual performance. It occurs when the luminance or luminance ratios are too high. Two well-

known types of glare have been distinguished in the literature: disability glare and discomfort 

glare. Disability glare reduces visibility due to scattered light in the eye, whereas discomfort 

glare causes “a sensation of annoyance or pain caused by high luminances in the field of view” 

(DiLaura et al. 2011). The latter type of glare causes a feeling of discomfort without necessarily 

impairing vision. Both types of glare have been extensively studied in the literature. However, 

while disability glare is well understood, much less is known about discomfort glare (Boyce 

2014). Therefore, discomfort glare is the focus of this research. 

The subject of glare has concerned researchers since the early years of the twentieth 

century (Poulton 1991), but even today, the causal mechanism of discomfort glare is not well 

understood (Boyce 2014). However, the four factors that contribute to the perception of 

discomfort glare produced by an individual light source are well known (DiLaura et al. 2011): 

(1) the luminance of the light source; (2) the position of the light source in relation to the point of 

fixation; (3) the visual size of the light source; and (4) the luminance of the background. 

Although these are widely accepted as factors affecting discomfort glare, existing metrics differ 

in parameters (e.g. Bullough’s et al. metric uses only illuminances (2008)).  

A reliable method for quantifying discomfort glare is necessary for predicting and 

minimizing glare, comparing lighting installations, and ensuring comfortable visual 

environments. Without a metric that accurately predicts discomfort glare for a given application, 

it is hard to improve lit environments (Eble-Hankins and Waters 2004). It is especially 
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challenging to minimize glare in outdoor nighttime environments, because these environments 

are characterized by low background luminances, high contrasts between lit and unlit surfaces, 

and small light sources such as light emitting diodes (LEDs) in the field of view. The challenges 

that exist when one assesses discomfort glare are the following: (1) LEDs that are only now 

becoming popular in outdoor installations have high luminance with the potential to cause more 

glare than conventional systems; (2) the predictive utility of existing discomfort glare formulae 

for small sources in outdoor nighttime environments is questionable due to metrics’ limitations; 

and (3) most existing formulae are based on subjective measures. Therefore, high variability in 

subjective discomfort glare judgements may decrease the accuracy of predictions.  Each of these 

issues is discussed in more detail in the following paragraphs. 

First, discomfort glare has been an issue in lighting for a long time, but it becomes even 

more apparent with the popularity of LEDs. Even though LEDs are not new sources, they are 

only recently finding widespread use in outdoor lighting applications such as sports arenas, 

roadways, parking lots, etc. These sources allow more design freedom with respect to luminance 

distributions due to their small size and high luminance. At the same time, this market 

transformation of using LEDs in outdoor environments introduces challenges for both 

researchers and designers, because LED luminaires have a sharp intensity cut-off and high-

contrast luminance patterns. A single LED chip within a luminaire can produce luminances of 

approximately 19x106 cd/m2 (Tyukhova and Waters 2014). These very high luminances increase 

the probability of causing glare. Yet, according to the LED web report (Remaking Cities Institute 

(RCI) 2011), the visual quality of LED lighting is rarely taken into account in street lighting 

projects, where emphasis is placed almost entirely on energy savings. The substantial glare that 

can be caused by LEDs is not typically included as a measurable criterion in the evaluation 
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process of lighting installations (RCI 2011). As a result, glare persists as an issue in outdoor 

environments (RCI 2011).  

Second, despite decades of glare research, the predictive utility of existing metrics for 

small, high luminance glare sources in outdoor nighttime environments is questionable due to 

their limitations. The limitations include the following: infinitely large glare predictions when 

looking directly at the glare source (CIE 112-1994 and Schmidt-Clausen and Bindels (1974) 

metrics), calculation of glare through illuminances and glare source luminance only (Bullough et 

al. (2008, 2011)), lack of validation of metrics through independent studies (the Unified Glare 

Rating (UGR) metric of the International Commission on Illumination (CIE 146,147-2002)), and 

limited applicability and anomalous results (CIE 31-1976, CIE 115-2010).  

Third, the causal mechanism of discomfort glare is not well understood, and most of the 

previous research was done with subjective measures only. However, oftentimes responses to 

discomfort glare include multiple reactions such as blinking, frowning, changes in pupil size, 

apparent changes in facial muscles, and even lacrimation (Hopkinson 1956, Lin et al. 2015). 

Recently, a growing number of researchers started including objective measures in their analysis 

(Berman et al. 1994, Lin et al. 2014, Lin et al. 2015). Researchers found correlations between 

subjective responses and objective measures such as electromyographic (EMG) readings of the 

muscles around the eyes (Berman et al. 1994), relative pupil size (RPS) data, and eye movement 

data (Lin et al. 2014, Lin et al. 2015).  Since subjective responses are known to have high 

variability (Bennet 1977b), it is highly desirable to validate results through an objective measure 

of discomfort glare that may offer the potential for higher predictive reliability.  

Currently, discomfort glare from small, high luminance sources in outdoor nighttime 

environments is rarely calculated in lighting practice. The first steps in the direction of 
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facilitating discomfort glare calculations is to address the three issues mentioned above. 

Therefore, the experimenter believes that further research is required to examine the effects of 

luminance of the glare source, its solid angle, its position, and background luminance on 

humans’ perceptions of discomfort glare from small, high luminance light sources such as LEDs. 

The ranges of these four variables can be based on previous studies that examined small sources 

and low luminance backgrounds (e.g. Bennett 1977b, Benz 1966, Putnam and Faucett 1951, 

Putnam and Gillmore 1957) and on field measurements. 

The experimenter is also convinced that to encourage the use of discomfort glare metric, 

it is essential to determine which existing metric predicts discomfort glare best when compared 

to human subjects’ assessments in the given application. With the availability of multiple 

metrics, the choice of metric is not obvious for this outdoor application. For this reason, a 

thorough comparison of subjective responses to glare predictions by existing metrics in the 

ranges of outdoor nighttime conditions was performed. Suitable metrics that were correlated with 

human subjects’ assessments include the following: the outdoor sports and area lighting metric 

(CIE 112-1994, in the remainder of this dissertation also referred to as metric 1), the motor 

vehicle lighting metric by Schmidt-Clausen and Bindels (1974, metric 2), and the combination of 

two metrics by Bullough and colleagues (2008, 2011, metric 3). Another discomfort glare metric 

specifically applicable to small sources is the UGR small source extension (CIE 146,147-2002, 

metric 4). Though the latter is designed for interior lighting applications, it also was included in 

this work because of its applicability to small sources. The road lighting formula (CIE 31-1976) 

was not examined in this research, since it was developed for very limited conditions (e.g. 

number of luminaires has to be in the range of 20 to 100 per km) and according to the CIE (115-
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2010) “no fully satisfactory method has yet been devised for quantifying discomfort glare to 

drivers….the Glare control Mark (CIE 31-1976) was used but resulted in anomalies”.  

To potentially increase the reliability of the collected data, the experimenter believes it is 

necessary to include physiological measures in the experiment in addition to subjective ratings of 

glare. Therefore, pupil diameter measurements and EMG readings that measure electrical 

activity of muscles around the eyes in response to glare were recorded in this study. Moreover, 

simultaneously assessing several reactions to discomfort glare might give a deeper understanding 

of how humans respond to visual stimuli that cause glare.  

In summary, the overarching goal of this research was to examine how humans respond 

to discomfort glare from small, high luminance light sources, particularly from LEDs, in outdoor 

nighttime environments. Additionally, this study aimed at determining which of the metrics 

mentioned above predicts discomfort glare most accurately when compared to human subjects’ 

responses, and at validating existing discomfort glare metrics in the ranges of the tested 

conditions. Finally, RPS and EMG readings were recorded to potentially increase the reliability 

of the data and to simultaneously study discomfort glare from different perspectives. 

To accomplish these goals, a parametric experiment was conducted that evaluated the 

effects of three glare source luminances (20,000; 205,000; 750,000 cd/m2), two positions (0°, 

10°), two sizes (10-5, 10-4 sr), and three background luminances (0.03; 0.3; 1 cd/m2) on the 

subjective judgements of perceived glare (a seven-point rating scale). Additionally two 

physiological measures of visual function (RPS and EMG recordings of the muscles around the 

eyes) were recorded. A correlation analysis between subjective responses to discomfort glare and 

predictions by four applicable metrics (metrics 1, 2, 3, and 4) was completed.  
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Fifty-six subjects participated in this study at Musco Sports Lighting in Oskaloosa, IA 

using an apparatus constructed specifically for this experiment, which was fully controlled 

through custom software. Subjects reported their judgements of discomfort glare on a rating 

scale, which were recorded together with EMG data and eye tracking (pupil) data. Subjects were 

sitting in a custom-made dark sphere and were exposed to glare sources without any additional 

task. Data from only forty-seven subjects were included in the analysis, due to the low quality of 

the excluded subjects’ data.  

Two analysis techniques were applied to the recorded data: a repeated-measures Analysis 

of Variance (ANOVA) applied to both subjective and pupil data, and a correlation analysis 

between subjective data and predictions by each of the four metrics used in this study. The 

results showed that higher discomfort glare is caused by an increase in the luminance of the glare 

source as well as an increase in its solid angle. Similarly, a decrease in the angle between the 

fixation point and the glare source and a decrease of the background luminance cause higher 

perceived discomfort glare. The correlation analysis showed that the UGR small source 

extension correlated best with the subjective responses compared to the other three metrics (r = 

0.879, p < 0.0001) in the tested ranges – even though it was not specifically designed for use in 

outdoor environments. The pupil data analysis in this study suggests that RPS is correlated with 

discomfort glare to some extent (r = 0.659, p < 0.001), meaning that, on average, when subjects 

perceive more discomfort glare, their pupils constrict more compared to the less uncomfortable 

initial condition. The EMG data were not analyzed due to problems with data acquisition that 

resulted in partial incompleteness (e.g. there were randomly missing values in the recorded data). 

The repeated-measures ANOVA on pupil data showed that all four tested variables were 

significant predictors of RPS. In particular, the analysis showed that the background luminance 
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has a significant effect on the RPS, such that when background luminance decreases, the RPS 

increases (F = 390.94, df = 2, p < 0.0001). The section below provides an overview of how this 

dissertation is structured.  

1.1 Dissertation Outline 

This dissertation consists of four additional chapters.   

Chapter 2 reviews the literature on discomfort glare from small, high luminance sources 

in outdoor nighttime environments, existing metrics, measurement techniques, and provides a 

detailed discussion of the problems and needs. 

Chapter 3 discusses the methodology for the discomfort glare experiment used in this 

study. It describes the methods, variables and levels selection, the apparatus and the controls 

software (both created specifically for this research), the measurement equipment, subjects, and a 

detailed description of the procedure.  

Chapter 4 describes the three bodies of data that were collected and how each dataset was 

analyzed. 

Chapter 5 discusses the results of the experiments and how they can be interpreted in a 

larger framework. It also outlines directions of future research topics.  

The appendices include additional information critical to this document. 
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CHAPTER 2 – LITERATURE REVIEW 

 If practice and prediction conflict, then prediction has to be modified.  
- Paul and Einhorn 1999  

This literature review consists of several major parts. First, both types of glare - 

discomfort and disability - are described. Then, small, high luminance sources in outdoor 

nighttime environments, such as LEDs, are briefly discussed. Next, existing metrics related to 

outdoor nighttime environments and/or to small sources are outlined. In addition, subjective and 

objective (physiological) measures of discomfort glare are described. Finally, research gaps are 

summarized. 

2.1 Glare 

Discomfort glare is “a sensation of annoyance or pain caused by high luminances in the 

field of view” (DiLaura et al. 2011). This type of glare causes a feeling of discomfort without 

necessarily impairing vision. The causal mechanism of discomfort glare is not well understood. 

However, the four factors that contribute to the perception of discomfort glare produced by an 

individual light source are well known: (1) the luminance of the light source; (2) the position of 

the source in the field of view; (3) the size of the glare source; (4) and the luminance of the 

background.  

The common form of a discomfort glare formula for a single glare source is (Boyce 

2014): 

 
� =

��
� ∙ ��

�

��
� ∙ ��

 
(2-1) 

Where  

G is a quantity that expresses the subjective sensation on a semantic/numerical scale; 

Ls is the luminance of the glare source, in cd/m2; 
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ωS is the solid angle subtended at the eye by the glare source, in sr; 

Lb is the luminance of the background, in cd/m2; 

p is the deviation of the glare source from the line of sight;  

a, b, c, d are weighting exponents that differ between the discomfort glare prediction 

systems. 

Brighter and larger light sources increase the probability of discomfort glare.  Brighter 

background luminance reduces the experience of glare as does locating the light sources farther 

away from an observer’s line of sight.  

Besides the four factors mentioned above, additional factors are known to influence the 

perception of discomfort glare such as the number of light sources in the field of view (Bennett 

1979a, 1979b), immediate surround luminance (Hopkinson 1957), and the spectral 

characteristics of the luminous surround (Sweater-Hickcox et al. 2013). In addition, age and 

demographics (Bennett 1972, 1977a), mood of the observers, and previous experience of the 

participants (Boyce 2014) were shown to impact the perception of discomfort glare. Discomfort 

glare has a cumulative effect; it can build up when people are exposed to high luminance sources 

for long periods of time (CIE 55-1983). It is more troublesome at the end of the day, or late in a 

week (Poulton 1991). Also, discomfort glare raises one’s level of irritability, and lowers the level 

of tolerance to distractions.  

In the book “Human Factors in Lighting”, Boyce discusses the importance of the context 

in which glare is assessed (2014). Glare is task dependent, meaning that the ratings depend on 

whether the participant is reading, writing, etc. In a daylighting study, for example, it was shown 

that discomfort glare is more easily tolerated if the observer finds the view interesting (Shin et al. 

2012). What makes this issue more complex is that in some lighting installations, instead of 
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creating adverse feelings, “sparkle” causes visual interest and stimulates the viewer (Akashi et al. 

2006).  

Disability glare or physiological glare, the second well-known type, reduces visibility due 

to light scattered in the eyes, which produces a luminous veil across the retinal image of an 

object and/or changes the local state of adaptation (Boyce 1981). Typically, if there is disability 

glare there is discomfort glare. However, there might be situations in which disability glare is 

present without discomfort glare, for example, when photographs are displayed on a wall 

adjacent to a window (DiLaura et al. 2011).  

Disability glare is little affected by the length of time it is experienced (CIE 55-1983) and 

is typically described by equivalent veiling luminance resulting from stray light in the eyes, 

which is superimposed on the vertical image, thereby lowering the contrast. The equivalent 

luminance is defined by the following basic formula (CIE 112-1994): 

 
����� = 10�

������,�

��
�

�

���

 
(2-2) 

 

Where  

����� is the veiling luminance, in cd/m2; 

Eglare is the illuminance at the eyes due to the glare source, in lx, and; 

θ is the angle between the direction of the light incidence of the i-th light source on the 

eye and the direction of the observer’s line of sight, in degrees.  

Illuminance at the eyes due to the glare light (in lux) is defined by the equation (2-3) 

(CIE 146,147-2002): 

 
������ =

������ ∙ ����

��
 

(2-3) 
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Where  

������ is the luminous intensity of the source in the direction of the eyes, in cd; 

d is the distance between the source and the eyes, in m, and; 

θ is the angle between the glare source and the line of sight, in degrees. 

Further developments of disability glare include taking into account the effect of age and 

ocular pigmentation, and the extension of the angular domain in the veiling luminance formula 

(CIE146,147-2002).  

Although both types of glare can occur in combination, these two phenomena are quite 

different. Discomfort glare is determined mainly by the luminance of the source, while disability 

glare depends on the quantity of light falling on the eye, and is largely independent of the source 

luminance. Discomfort glare influences people, while disability glare influences task 

performance (CIE 55-1983). In “Outdoor Lighting”, Schreuder mentioned that disability glare is 

considered the exclusive glare aspect in most recommendations (2008).  However, the author 

pointed out that the lighting community is not fully satisfied with disregarding discomfort glare.  

2.2 Small Sources in Outdoor Nighttime Environments 

In outdoor nighttime environments it is especially challenging to minimize glare. These 

environments are characterized by low background luminances, high contrasts between lit and 

unlit surfaces, and small light sources in the field of view. These characteristics increase the 

likelihood of perceiving glare.  

In the past years, discomfort glare from small sources in dark environments was studied 

by several authors with vastly varying apparatus and methodological differences (Bennett 1977b, 

Benz 1966, Putnam and Faucett 1951, etc.). However, discomfort glare becomes even more 

apparent with the popularity of LEDs. LEDs are not new sources, but only recently they are 
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finding widespread use in outdoor lighting applications such as sports arenas, roadways, parking 

lots, etc. These sources are of a small size and high luminance, which, on the one hand, allows 

more design freedom with respect to luminance distributions. On the other hand, the increasing 

use of LEDs in outdoor environments introduces challenges due to a sharp intensity cut-off and 

high-contrast luminance patterns. A single LED chip within a luminaire can produce luminances 

of approximately 19x106 cd/m2 (Tyukhova and Waters 2014). These very high luminances 

increase the probability of causing glare. Yet, discomfort glare from small, high luminance 

sources, such as LEDs, in outdoor nighttime environments is rarely calculated in lighting 

practice, and glare persists as an issue (RCI 2011). Further research is required to examine 

human subjects’ judgements of discomfort glare in this application. 

2.3 Discomfort Glare Metrics for Outdoor Nighttime Environments 

To encourage the calculation of discomfort glare from small, high luminance sources in 

outdoor nighttime environments, one needs to know which metric predicts discomfort glare best 

compared to human subjects’ responses. Therefore, one of the aims of this research was to 

determine which of the applicable metrics predicts glare most accurately in this application. 

Reliable comparison between degrees of discomfort glare caused by lighting installations is 

necessary and desirable in the lighting industry. Glare metrics allow for a quantification of 

discomfort glare, and the comparison between the amount of glare caused by one lighting 

installation versus another. Without such reliable metrics, it is hard to improve lit environments 

(Eble-Hankins and Waters 2004). A great amount of research on discomfort glare produced 

discomfort glare metrics for different applications. However, disagreements on how to evaluate 

discomfort glare still exist (Clear 2013).  
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This section covers relevant metrics that were developed specifically for outdoor 

nighttime environments and/or for small sources and discusses their limitations. Six discomfort 

glare metrics are covered in the next sections – the outdoor sports and area lighting metric (CIE 

112-1994), the motor vehicle lighting metric (Schmidt-Clausen and Bindels 1974), the road 

lighting installations metric (CIE 31-1976, CIE 115-1995), the outdoor lighting installations 

metrics (Bullough et al. 2008, 2011); the Unified Glare Rating (UGR) of the International 

Commission on Illumination (CIE) (CIE 117-1995), and the UGR small source extension.  

2.3.1 Discomfort Glare in Outdoor Sports and Area Lighting (CIE 112-1994) 

Bommel’s et al. study (1983) was one of the studies that formed the basis for the glare 

evaluation formula for outdoor sports and area lighting (CIE 112-1994). In their research, 

Bommel et al. investigated the quantitative relationship between 3000 glare assessments made on 

a nine-point scale (Figure 2-1) and lighting parameters for outdoor sports grounds in 140 

different situations. Horizontal illuminances (assumed on the sports grounds) ranged from 50 to 

1500 lx.  

1 unbearable 
2     

3 disturbing 
4 

5 just admissible 
6 

7 noticeable 
8 

9 unnoticeable 

Figure 2-1. Rating on a nine-point scale (Bommel et al. 1983) 

Both veiling luminances, namely - the equivalent veiling luminance produced by 

luminaires (Lv1) and the equivalent veiling luminance produced by the environment (Lve), 

correlated best with the glare assessments. Equivalent veiling luminance (as defined by 

Holladay-Stiles, equation (2-2)) produced by luminaires is simply the luminance produced by the 
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light from the luminaires that is directly incident on the eye. The veiling luminance from the 

environment is the equivalent veiling luminance caused by light reflected towards the eye by the 

environment such as the field; it can be viewed as an adaptation measure. For a given observer 

position and a given viewing direction, below the eye level, the degree of glare depends on both 

equivalent veiling luminances (described above). The glare index obtained by Bommel et al. 

through a regression analysis of all data collected is called glare control mark for floodlighting 

(GF):  

 
�� = 7.3 − 2.4log (

���

���
�.�)    

(2-4) 

Where 

��� is the veiling luminance produced by the luminaire, in cd/m2; 

��� is the veiling luminance produced by the environment, in cd/m2.  

Validity was obtained for the veiling luminance produced by the luminaire in the range of 

0.02 to 20 cd/m2 and for the veiling luminance produced by the environment in the range of 0.02 

to 5 cd/m2 (Bommel et al. 1983, Tekelenburg 1982). The formula is valid for viewing directions 

below the eye level (CIE 600/89-1989).  

In a simplified method for outdoor sports grounds with viewing directions towards the 

field, the veiling luminance produced by the environment can be approximated as follows: 

 L�� = 0.035× ��,�� (2-5) 

Where 

Lf,av  is the average field luminance from the observer’s position, in cd/m2. 

 
L�,�� = ����,�� ×

�

�
 

(2-6) 

Ehor,av is the average horizontal area illuminance, in lx; 

ρ is the reflectance of the surface. 
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The glare control mark formula (2-4) was tested for tennis court floodlighting and 

showed good agreement with average observers’ assessments (Hargroves 1986). 

Note that Bommel et al. investigated the effect of discomfort glare and found that veiling 

luminance correlates best with glare assessments (1983). However, previously, equivalent 

veiling luminance was used for the description of disability glare (section 2.1). For this reason, 

Bommel et al. referred to glare in general instead of distinguishing between the two well-known 

types of glare (CIE600/89 1989). 

The glare rating (GR) as defined in the CIE standard (112-1994) is as follows: 

 
�� = 27+ 24log (

���

���
�.�)    (2-7) 

Where 

��� is the veiling luminance produced by the luminaire, in cd/m2; 

��� is the veiling luminance produced by the environment, in cd/m2.  

Equivalent veiling luminance in equation (2-7) is determined as in equation (2-2) . The 

CIE standard provides the same simplified approximation of glare parameters as in Bommel’s et 

al. 1983 study (equations (2-5),(2-6)). The angle between the observer’s line of sight and the 

direction of the light incidence is limited to the range of 1.5̊ < θ < 60̊. Glare ratings vary from 10 

(unnoticeable) to 90 (unbearable). The GR (CIE 112-1994) can be calculated from the previously 

defined glare control mark (GF) reported by Bommel et al. (1983) as follows: 

 
�� = (10 − ��)∙ 10  

(2-8) 

Using GR it is possible to compare sports and area lighting installations to each other. 

Until the publication of the CIE standard of 1994 no generally accepted glare evaluation formula 

existed for outdoor sports areas. The most recent standard CIE 169-2005 refers to CIE 112-1994 

for the glare calculations.  
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2.3.2 Discomfort Glare Metric for Roadway Lighting (CIE 115-1995) 

The next outdoor nighttime metric is concerned with glare in roadway lighting which was 

investigated in both static and dynamic models (Bommel and De Boer 1980). Based on previous 

studies an elaborate formula for assessing discomfort glare in road lighting installations was 

derived by Schreuder (Narisada and Schreuder 2004). It was accepted by the CIE as the Glare 

Control Mark formula (CIE 31-1976, CIE 115-1995):  

 � = 13.84− 3.3������ + 1.3(���
���

���
)�.� − 0.08log

���

���
+ 1.29logF+

C + 0.97logL�� + 4.41���ℎ�− 1.46����    

 

(2-9) 

Where 

��� is the luminous intensity of a luminaire emitted in a direction with an angle of 80˚ 

with respect to the downward vertical, in cd; 

��� is the luminous intensity of a luminaire emitted in a direction with an angle of 88˚ 

with respect to the downward vertical, in cd; 

F is the area of the projected light-emitting surface of the luminaire in the direction of 76˚ 

with respect to the downward vertical in the road axis parallel meridian plane, in m2; 

C is a color factor. C=0.4 for low-pressure sodium lamps, C=0 for other light sources; 

L�� is the average road surface luminance, cd/m2; 

h' is the reduced mounting height of the luminaires (the actual mounting height minus 1.5 

m, which represents the eye height of the observer), in m; 

p is the number of luminaires per km. 

This formula is applicable for installation longer than 300 m for one or two luminaire 

rows in the road axis direction. Its validity is guaranteed in the following ranges: 

50 < ��� < 7000 (��); 
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1 <
���

���
< 50; 

0.007<F<0.4 (m2); 

0.3<Lav<7 (cd/m2); 

5<h’<20 (m); 

20<p<100.  

According to the latest CIE document (115-2010), “no fully satisfactory method has yet 

been devised for quantifying discomfort glare to drivers on traffic routes. Formerly G, the Glare 

control Mark (CIE 31-1976), was used but resulted in anomalies”. Therefore, this metric was 

excluded from this research.  

2.3.3 Discomfort Glare in Motor Vehicle Lighting (Schmidt-Clausen and Bindels 1974) 

To assess discomfort glare from automotive headlamps, Schmidt-Clausen and Bindels 

investigated glare illuminance, adaptation luminance, the angle between the light source and the 

line of sight, and the number of sources. The effects of these variables on the perception of 

discomfort glare were described mathematically by the following formula: 

    
� = 5 − 2���

������

0.003 �1 + �
�����
0.04 � ∙ �

�.��

 (2-10) 

 

Where 

W is the discomfort glare rating on a 9-point scale (smaller values mean more 

discomfort); 

Eglare is the glare illuminance at the eyes due to the glare source, in lx; 

Ladap is the adaptation luminance, in cd/m2; 

θ is the angle between the light source and the line of sight, in min. arc. 
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This formula was investigated for a glare source that subtended an angle of 8’ at the 

observer’s eyes (equivalent to the diameter of 24 cm at the distance of 100 m) in the following 

ranges. The road (adaptation) luminance was in the range of 0.0015 to 2 cd/m2, the sky was black 

(luminance was not specified). Illuminance at the eyes was varied from 0.0025 to 6.9 lx. Up to 

five light sources simultaneously present in the field of view were investigated. The authors 

concluded that it is possible to replace multiple glare sources by a single source located at the 

center of all glare sources. The angle between the glare source and the line of sight varied from 

10’ (which is 1/6º) to 90º in the experiment. The authors indicated that the results are applicable 

to motor vehicle lighting and to street lighting. 

The model by Schmidt-Clausen and Bindels predicts discomfort glare ratings well for 

situations when subjects attempted to detect the onset of low reflectance off-axis targets (Boyce 

2009). However, according to the motor vehicle glare formula (equation (2-10)), looking directly 

at the light source produces invalid glare ratings that approach infinity. This drawback was 

addressed in the Bullough’s et al metric (2008).  

2.3.4 Discomfort Glare Formula in Outdoor Lighting Installations (Bullough et al. 2008, 

2011) 

Bullough and colleagues at the Lighting Research Center (LRC) at Rensselaer 

Polytechnic Institute (RPI) proposed a discomfort glare model for outdoor lighting installations 

solely based on illuminances (2008). The authors defined three illuminances - the illuminance 

from the light source(s), the surround illuminance, and the ambient illuminance - that relate to 

subjective judgments of discomfort glare in outdoor installations. The illuminance from the glare 

source includes only the direct component from the glare source. The surround illuminance is the 

illuminance resulting from the subtraction of the ambient and the direct components from the 
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total illuminance at the eyes, which essentially is the reflected component of the illuminance 

from the glare source. The ambient illuminance is the illuminance from other sources in the 

environment, when the light source under consideration is switched off.  

 The researchers acquired subjective glare appraisals for light sources of various sizes 

(not specified in their publication), illuminances from the light sources (0.1-113.3 lx), surround 

illuminances (0.01-0.4 lx), ambient illuminances (0.01-1.6 lx), light source luminances (5,300-

196,000 cd/m2), and viewing distances (3 - 20 m) using the De Boer scale in indoor, outdoor, and 

indoor/outdoor environments.  

The resulting discomfort glare model for outdoor lighting installations is the following: 

 
�� = log(�� + ��)+ 0.6log�

��
��
� − 0.5���(��) 

 

(2-11) 

Where 

�� is the vertical ambient illuminance at the subject’s viewing location (the light source 

being tested is switched off), in lx;  

�� is the vertical illuminance from the light source at the subject’s viewing location 

(h=1.5m), in lx, (direct illuminance from the light source being tested);  

E� is the surround illuminance, in lx (the total illuminance at the subjects’ eyes minus El 

and Ea, i.e. illuminance at the eyes received from a light source after being reflected or scattered). 

The relation between the model prediction from equation (2-11) and the De Boer ratings 

(DB) (smaller values mean more discomfort) is the following: 

 �� = 6.6 − 6.4�����  (2-12) 

Where 

DG is the calculation of discomfort glare through the model for outdoor lighting 

installations (equation (2-11)). 



www.manaraa.com

20 
 

The authors reported a goodness-of-fit r2 = 0.7 between the model predictions and the 

overall set of data.  The authors pointed out the simplicity of the model and its ability to predict 

discomfort glare in a wide range of outdoor lighting installations. It can be readily incorporated 

into conventional application software. Bullough’s et al. (2008) metric also overcomes the 

difficulty of using the Schmidt-Clausen and Bindels formula (1974), in which the background 

luminance is assumed to be a single, uniform value, which is rarely the case.  

Later, Bullough and colleagues found that for a light source of angular sizes of 0.3º or 

more the glare model requires the inclusion of the glare source luminance to predict glare with 

higher accuracy (2011): 

 
DB=6.6-6.4logDG+1.4log(50,000/LL) 

(2-13) 

 
Where 

DB – is the De Boer discomfort glare scale rating; 

DG – is the discomfort glare as calculated in formula (2-11); 

LL – is the luminance of the light source, in cd/m2. 

These formulas (2-11), (2-12), (2-13) have been developed fairly recently and use only 

illuminances and glare source luminance as predictors of discomfort glare. Therefore, they need 

further experimental validation.   

2.3.5 The Unified Glare Rating (UGR) (CIE 117-1995) 

The Unified Glare Rating (UGR) formula assesses discomfort glare from normal size 

sources (0.0003 to 0.1 sr) in interior lighting (CIE 117-1995). However, since the UGR small 

source extension is based on the UGR, the UGR is covered in this section. 
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The UGR was developed by the CIE in response to a request to create a practical, widely 

used discomfort glare evaluation system. The UGR is composed of the best parts of the major 

formulae in terms of practicability and familiarity with the results of glare prediction at the time.  

The UGR combines the Einhorn and Hopkinson formulae, the Guth position index, the aspects of 

the CIE Glare Index (CGI) and the British Glare Index (BGI) to evaluate glare sensations of 

electric lighting systems (CIE 117-1995, Wienold and Christoffersen 2006). The UGR formula is 

given as follows (CIE 117-1995): 

 
��� = 8��� ∙ [

0.25

��
∙�

�� ∙ �

��
]     

(2-14) 

Where  

Lb is the background luminance, in cd/m2; 

L is the luminance of the luminous parts of each luminaire in the direction of the 

observer’s eyes, in cd/m2; 

ω is the solid angle of the luminous parts of each luminaire at the observer’s eyes, in sr, 

and; 

p is the Guth position index for each luminaire (displacement from the line of sight).  

In the calculation of the background luminance the glare sources are excluded. 

Background luminance (in cd/m2) is the uniform luminance of the whole surroundings, which 

produces the same illuminance on a vertical plane at the observer’s eyes as the visual field under 

consideration (CIE 117-1995). It is defined as follows: 

 
�� =

��

�
    

(2-15) 

Where 

Ei is the indirect illuminance at the eyes of the observer, in lx. 
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Errors in background luminance do not influence the UGR values much. For example, an 

error of +33% in background luminance results in an error of the UGR of 1 unit, which is the 

least detectible step. The practical range of the UGR scale is from 10 to 30.   

The luminance of the luminaire, L, is defined by: 

 
� =

�

��
 

(2-16) 

Where  

I is the luminous intensity of the luminaire in the direction of the observer’s eyes, in cd; 

Ap is the projected area of the luminaire, in m2.  

The solid angle is calculated through the projected area and the distance from the 

observer to the center of the luminous parts of the luminaire: 

 � =
��

��
       (2-17) 

Where 

ω is the solid angle of the luminous parts of each luminaire at the observer’s eyes, in sr 

Ap is the projected area of the luminaire, in m2; 

r is the distance from the observer to the center of the luminous parts of the luminaire, in 

m. 

The UGR is an interval scale, which means that only differences in glare ratings are 

meaningful; they represent the perceptible difference in psychological value – discomfort glare. 

High values indicate significant discomfort glare, while low values indicate little discomfort 

glare. If UGR < 10, then it is assumed that there is no discomfort. The UGR is limited to solid 

angles in the range of 0.0003 to 0.1 sr (CIE 117-1995). 

The correlation of UGR ratings with subjective appraisals of discomfort glare has been 

tested in at least two studies (Boyce et al. 2003, Akashi et al. 1996). For example, Akashi et al. 
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examined the correlations of UGR with subjective glare ratings from a single light source and 

multiple light sources in a full-scale simulated office room (1996). They found high correlations 

between the UGR values and subjective ratings with a single glare source (r = 0.96), as well as 

the UGR values and subjective ratings with multiple glare sources (r = 0.95). However, Akashi et 

al. also found that multiple glare sources are overestimated by the UGR. Therefore, to account 

for overestimation, the authors proposed a modification to the UGR formula to include the 

multiplication of the term (n-0.006), where n is the number of glare sources.  

A number of exploration attempts to extend the UGR formula to various applications was 

made previously: to large sources (Sendrup 2001), to daylighting (Fisekis et al. 2003), and to 

LED sources of matrix arrangements that have non-uniform luminance (Takahashi et al. 2007). 

In 2014, the CIE organized a workshop on “Glare of LED Lighting Products” with the goal to 

develop a correction to the UGR formula that accounts for non-uniformity. 

Einhorn recognized the merits of the UGR formula such as its simplicity (1998). 

However, he also outlined the following limitations: (1) UGR is applicable for normal size 

luminaires, because for small light sources it overestimates glare, and for large sources it 

underestimates glare; (2) the position of the light source has to be at least 5º off the line of sight; 

(3) the adaptation level is debatable, because the UGR does not include the direct illuminance at 

the eyes, which also contributes to adaptation.  

To address the first issue outlined above, the CIE published a standard “Glare collection” 

(CIE146,147-2002) which proposed extensions for small, large, and complex light sources. The 

following section covers the UGR small source extension, because this study focuses on small 

sources. 
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2.3.5.1 The UGR Extension for Small Light Sources (CIE146,147-2002) 

The internationally accepted UGR formula is valid for normal sources with solid angles 

in the range of 0.0003 to 0.1 sr (CIE 117-1995). However, because the UGR predicts intolerable 

glare for small sources such as incandescent lamps which are widely accepted by the public, the 

CIE proposed an extension for small sources (CIE 146,147-2002). 

The CIE defined a small source as one that has a projected area of 0.005 m2 (CIE 146,147 

- 2002). This corresponds to a disc of diameter 80 mm at interior lighting distances. This area 

was the result of a study by Paul and Einhorn, who showed that small sources viewed off the line 

of sight at interior distances have a constant effective area (1999).  

In their study (1999), Paul and Einhorn tested whether the effective size of a small source 

should be expressed in terms of a solid angle or an area. The experimenters were changing the 

background luminance (and as a result the indirect illuminance at the eyes), while the 

participants were changing the intensity of a light source (and as a result the direct illuminance at 

the eyes) at a given background luminance, such that the subjective assessment had to 

correspond to the ‘just intolerable’ criterion. The tests were done at different interior distances. 

The researchers re-expressed the UGR formula (equation (2-14)) by substituting Lb with 
��

�
 as 

follows: 

 
��� = 8��� ∙ [

0.785

��
∙�

�� ∙ �

��
]     

(2-18) 

The UGR was reformulated further, assuming one source. Since � =
��

�
, equation (2-18) 

becomes: 

 
��� = 8��� ∙ [�

0.785

��
� ∙ �

��
�

��
�/�] 

(2-19) 
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And after substituting the solid angle as 
�

��
, equation (2-19) becomes: 

 
��� = 8��� ∙ [�

0.785

��
� ∙ �

��
�

��
���/�]  

(2-20) 

The next step was to show how the term 
��
�

��
 varied with distance. For a constant position 

index (p), if the term (Ed
2/Ei) remains constant with the change of distance, then the ‘constant 

omega’ hypothesis is true, if not then ‘constant area’ one is. Paul and Einhorn found support for 

the ‘constant area’ hypothesis. For a small light source the projected area was determined as 

0.005 m2. This means that any source with a projected area of less than 0.005 m2 should be 

considered to have a constant effective area equivalent to 0.005 m2, when viewed off the line of 

sight.  Since luminance can be expressed with equation (2-21), after substituting the projected 

area with 0.005 m2, one obtains the equation (2-22). When this new area is substituted into the 

solid angle equation (2-17), then one obtains equation (2-23) 

 
� =

�

��
    (2-21) 

 
� =

�

0.005
= 200 ∙ � (2-22) 

 
� =

0.005

��
 (2-23) 

 
Substitution of luminance and solid angle as expressed in equations (2-22), (2-23) into 

the UGR equation (2-14) results in the modified UGR formula for small light sources: 

 
��� = 8��� ∙ [

0.25

��
∙�

200 ∙ ��

����
]     

(2-24) 

This formula is restricted to small sources more than 5° off the line of sight at interior 

lighting distances; glare from these sources is determined by their intensity (CIE 146,147-2002). 
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2.4 Measurement of Discomfort Glare   

Discomfort glare is usually assessed using subjective measures. However, subjective 

responses are known to have high variability (Bennet 1977b). Since the correlations of predicted 

levels and individual or group ratings of discomfort glare are typically low (Boyce 2014), it is 

highly desirable to have an objective (or physiological) measure of discomfort glare that has the 

potential to increase the reliability of data. It is critical to understand which method(s) should be 

used in this research to obtain reliable results. Therefore, the sections below discuss subjective 

and objective discomfort glare measures that have been used in glare research in the past.  

2.4.1 Subjective Measurements 

Most discomfort glare research was done with subjective scales. There are four methods 

available to obtain a subjective measure of discomfort glare with human subjects (Xia et al. 

2011): (1) a rating method using a semantic differential scale; (2) a paired comparison method; 

(3) a single-label method; and (4) categorization. Below is a summary of these methods which 

became the basis for the subjective measurement choice in this study.   

2.4.1.1 Semantic differential scale 

The first method is a rating method using a semantic differential scale. Most studies 

utilize a 7- or 9- point scale for subjective glare appraisals (CIE 55-1983, CIE 112-1994, 

Hargroves 1986, Akashi 1996, etc.). According to Reis et al. (2000), for unipolar scales 

reliability and validity are optimized for approximately 5-7 points.   

In outdoor nighttime environments, the most frequently used scale is the 9-point De Boer 

scale (Table 2-1) (or modifications thereof), which was originally published in Dutch (Olson 

1991). Schreuder argued that this scale has several problems, which, when combined, are likely 

to lower the reliability and validity of the scale (2008). First, this scale is counterintuitive, 
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meaning that higher numbers represent lower level of experienced glare. Second, it is not known 

whether the original Dutch version of the scale was an interval scale, which is desirable for 

performing routine mathematical and statistical operations. For example, appraisals made by two 

observers as ‘6’, one as ‘7’, and one as ‘8’, might not be appropriate to average to 27/4 = ‘6.75’, 

although it always has been done this way (Schreuder 2008).  

Table 2-1. The 9-point De Boer scale 

1 Unbearable 
2 
3 Disturbing 
4 
5 Just acceptable 
6 
7 Satisfactory 
8 
9 Just Noticeable 

 
The anchors of the De Boer scale do not indicate an interval scale, in which the 

differences are the same. Consider, for example, the difference between “satisfactory” and “just 

noticeable” or between “disturbing” and “unbearable”. In a related study, participants reported 

that the term ‘satisfactory’ discomfort was ambiguous, and it was often interchanged with ‘just 

noticeable’ discomfort in the scale (Gellatly and Weintraub 1990).  

In the Gellantly and Weintraub study, the researchers explored whether the De Boer scale 

was effective in predicting the amount of glare, and if not, attempted to determine potential 

improvements (1990). The authors concluded that subjects most frequently assign higher 

numbers to more uncomfortable situations, unlike in the De Boer scale where higher numbers 

mean less discomfort. For the US population increasing numerical values are associated with (1) 

increasing levels of what is measured, or (2) an increasing degree of positive value of what is 

measured (e.g. the higher grade point average (GPA) the better). However, since a higher level 
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of discomfort glare is less desirable, the numerical assignment might become ambiguous. The 

authors proposed to add zero to the scale with a descriptor of ‘no discomfort’. This anchoring of 

the scale at the lower end reduces user’s ambiguity. In addition, Reis et al. suggest that data 

quality is better when all scale points are labeled with words (2000). These labels should have 

meaning that divide up the continuum into approximately equal units (Reis et al. 2000).   

Gellantly and Weintraub highlighted that an equal-interval and unidimensional 

psychological scale is desirable. They pointed out that the labels of the De Boer scale may be 

referring not only to the level of discomfort, but also to what they call value of discomfort 

acceptability. Subjects might agree on the magnitude of discomfort, but disagree whether it is 

acceptable or not. These two values may or may not lie on the same psychological continuum. 

The authors proposed to improve the rating scales by using labels that refer to the levels of 

discomfort only. Related to this, Boyce mentioned that individual variability is due to the fact 

that observers have to perform two tasks when they are asked to identify when a condition 

becomes uncomfortable (2014). These tasks are discrimination – tell when a condition occurred, 

and an assessment – decide if it is uncomfortable or not. The discrimination part of the process is 

likely to be determined by the characteristics of the visual system, which has individual 

variability. However, the assessment adds another kind of variability based on past experiences 

and expectation of the subjects (Boyce 2014).  

The meaning of “glare” should be well articulated to the subjects, because participants 

define and understand it differently from researchers (Clarke et al. 1991). If different participants 

have their own definitions of the word “glare”, this contributes random or error variance to 

grouped glare ratings, which results in poor correlations between individuals’ ratings and the 

glare prediction systems. In Clarke and colleagues’ study, the authors showed that when defining 
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glare, people place great emphasis on reflections and brightness. Oftentimes in their descriptions, 

subjects talked about extreme situations; it is easier to agree on the extremes of glare than on 

intermediate (mild or moderate) discomfort glare conditions. The authors indicated that it is 

important to inform subjects about the different components of glare such as brightness, 

reflection, discomfort, etc. 

Even though there are some problems with this scale, the data obtained with it are valid, 

suggesting that subjects are primarily guided by the numbers not the adjectives (Olson 1991, 

Narisada and Schreuder 2004). “When the observers are not familiar with the physical units, the 

only option they have is to discriminate between the stimulus magnitudes” (Poulton 1989).  

2.4.1.2 Paired comparison 

The second method of obtaining a subjective measure of discomfort glare with human 

subjects is paired comparison. In this method, subjects indicate which of the two stimuli 

simultaneously present in the field of view causes more discomfort when looking at the fixation 

point (Eble-Hankins and Waters 2009). This is a ranking method. In contrast to a rating question, 

which asks one to compare different stimuli separately using a common scale, a ranking question 

asks one to compare different stimuli directly to one another (Reis et al. 2000).  

In a study of discomfort glare from non-uniform luminance sources, the paired 

comparison method showed less variability than the subjective scale assessment (Eble-Hankins 

and Waters 2009). Ranking data are generally more reliable and validated than rating data (Reis 

et al. 2000). Despite the fact that this method has little variability, it has two major drawbacks.  

First, the resulting outcome is mainly a ranking of different stimuli, unlike in the ratings 

method that shows the differences between the observer’s evaluations of stimuli. Therefore, in a 

paired comparison method, in order to obtain more information about the relative difference in 
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discomfort between the ranked stimuli, subjects can be requested to score the difference in 

discomfort between the two stimuli (e.g. on a five-point numerical scale).  The second drawback 

of paired comparison is the time it takes to rank all possible stimuli. The number of presented 

pairs grows quadratically in the number of conditions. The number of pairs from a set of n 

conditions is calculated as follows:  

 F(n)=n(n-1)/2 (n choose 2) (2-25) 

 For example, for 36 lighting conditions there are 630 possible pairs to assess. In addition, 

if one wants to account for a potential left/right bias to compare each stimulus to itself, one 

should add an additional 36 stimuli to the total number (Eble-Hankins 2008).  

Another challenge with this method is to accommodate paired comparison for the 0º 

position in this research. The spatial distribution of the cones in the fovea has a dramatic drop-

off. The foveal field of view can be approximated as 2˚ (Schreuder 2008). Therefore, subjects 

can look directly at only one glare source at a time; two sources cannot be viewed by the foveal 

vision simultaneously. However, the main intention of using the 0º position is to study glare for 

the foveal vision. To accommodate the paired comparison method in this case, special 

considerations have to be given to the presentation technique. When two glare sources have to be 

located at the 0˚ position, one source should be slightly shifted to the left from the center and the 

other to the right, but both in the same plane as the eye level. In this case, instead of looking at 

the fixation point between the light sources, a subject has to look directly at one source at a time 

in a counterbalanced order to make sure one uses the foveal vision for the discomfort glare 

assessments. The drawback of this method is that it might be confusing for the subjects to know 

where to look first - right or left. In addition, it is not clear how to account for adaptation in this 

case. Considerations of the cost, time, and methodology exclude paired comparison. 
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2.4.1.3 Single-label method 

The third method is the single-label method, in which subjects adjust a level of the 

variable until it meets a predefined criterion. For example, one can change the luminance of the 

light source until it creates a perception of the borderline between comfort and discomfort 

(BCD), first used by Luckiesh and Guth (1949). In related studies, subjects tune the 

characteristics of the light source in the periphery to match the luminance of the light source in 

the direct line of sight (e.g. Putnam and Gillmore 1957).  

It is a long task with large variations between subjects. The problem with this method is 

that a single label (such as BCD) must be accurately defined, and subjects have to manipulate the 

glare stimulus themselves (De Boer and Schreuder 1967). Multi-label scales are found to better 

represent the amount of glare (De Boer and Schreuder 1967). In addition, as Lulla and Bennett 

showed, the presented range influences subjects’ adjustments of BCD (1981). 

2.4.1.4 Categorization of comfort 

The final method is categorization of comfort. In this method, subjects answer questions 

such as “Is the light comfortable? Yes or no?” (Boyce 2003). The proportion of subjects 

answering Yes/No indicates whether this lighting condition is comfortable or not. It is only a 

rough indication of whether comfort increases or decreases.  

After reviewing the subjective methods, a rating scale method was chosen. The choice of 

the specific scale is provided in section 3.2. 

 

2.4.2 Objective Measure 

The underlying mechanism that is responsible for discomfort glare is unknown. However, 

it is highly desirable to have an objective measure of discomfort glare that may offer the 
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potential for higher reliability of glare predictions. In general an objective variable may be 

measured as precisely as the measuring equipment allows (Putnam and Gillmore 1957). On the 

other hand, a subjective measure is limited in accuracy due to the large differences among 

individuals and more moderate variations within the individuals themselves (Putnam and 

Gillmore 1957).  

Discomfort glare may cause little apparent change in the eyes or facial muscles, blinking, 

frowning, and even lacrimation (Hopkinson 1956). Researchers have been looking at potential 

measures such as changes in pupil size and pupillary oscillations (for example, Hopkinson 1956, 

Howarth et al. 1993, Fry and King 1975, Lin et al. 2015, Stringham et al. 2011), facial muscle 

responses (Berman et al. 1994), eye movements (Lin et al. 2014, Lin et al. 2015), etc.  

Several authors explored the pupil’s response to glare. The pupil diameter is controlled 

by two sets of smooth muscles in the iris (Sirois and Brisson 2014). The sphincter muscle forms 

a ring around the pupil and contracts it. A set of dilator muscles radiate from the sphincter to the 

circumference and dilate it (Schreuder 2008, Rea 2013). The function of these changes in 

diameter is to modulate the amount of light that reaches the retina, thus to optimize vision (Sirois 

and Brisson 2014). Hopkinson did not find a relationship between the pupil diameter and 

discomfort glare (1956). He indicated that the pupil diameter by itself cannot be an objective 

measure of discomfort. Other factors such as illumination received at the eyes change pupil 

diameter. He hypothesized that discomfort glare might be, in part, related to the opposing actions 

of sphincter and dilator muscles in the presence of a glare source that highly stimulates a part of 

the retina as opposed to the other parts of the retina that are adapted to a lower background 

luminance.   
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Based on Hopkinson’s idea - discomfort originates from the antagonistic actions of the 

sphincter and dilator muscles, Howarth and colleagues tested the hypothesis that the dynamic 

characteristics of pupillary hippus could be different in discomfort glare conditions versus in no-

glare conditions (1993). Since the iris is sensitive to pain (Fugate 1957), the iridomotor system 

could be involved in the sensation of discomfort felt in the presence of glare sources. Note that in 

Howarth’s et al. paper, they used the term ‘hippus’ to describe changes of normal healthy pupil 

size under steady conditions. Rea, for example, mentions that a normal pupil is in a state of 

constant movement (2013). However, rhythmic contractions and dilations of the pupil can be 

associated with a much more marked condition such as epilepsy. Howarth and colleagues tested 

three observers at various steady illuminance levels (1993), and concluded that pupillary hippus 

is not directly responsible for discomfort. The iris movement does not seem to cause discomfort. 

Unlike Hopkinson, in Stringham’s et al. study with twenty-six subjects, the authors found 

a correlation between visual discomfort glare ratings and pupil diameters (r = -0.429, p = 0.037), 

which they called unexpected (2011). On average, the higher the discomfort, the smaller the 

subject’s pupils. Stringham et al. assumed that since pain-signaling fibers of the trigeminal nerve 

(the fifth cranial nerve that is responsible for sensation in the face) innervate the dilator and 

constrictor muscles of the iris, it could be that during visual discomfort the iris experiences 

intense stretching and maximum constriction. The authors also hypothesized that Howarth et al. 

(1993) did not find the relationship between visual discomfort and hippus because they used only 

one subject. 

The same trend – the greater the discomfort, the greater the pupil constriction – was 

shown in another study (Lin et al. 2015). The authors found a correlation between subjective 

responses on the De Boer scale and relative pupil size (RPS) (r = -0.61, p < 0.001). This 
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correlation showed that the pupil becomes smaller when the glare source is presented compared 

to the initial no-glare condition. The authors also pointed to the fact that the glare source affects 

the trigeminal nerve and pupil muscles. 

In other studies on objective measures of discomfort, the researchers hypothesized that 

discomfort glare is accompanied by a contraction or spasm in the extraocular muscles (e.g. 

Murray et al. 2002). Muscles contract in response to nerve impulses and produce force 

(Rosenbaum 1991). Muscles’ activity is measured by electromyography (EMG), a technique for 

recording the electrical activity of muscles using electrodes. Muscle responses can be measured, 

for example, with the Focus EMG machine (TeleEMG website).  

In a 1994 study, Berman et al. examined the EMG activity of facial muscles around the 

eyes. They hypothesized that discomfort glare causes a subtle, involuntary contraction of these 

muscles in response to glare. In their study the authors measured the EMG activity of orbicularis 

oculi (muscles responsible for closing the eyes) of twenty subjects. This objective measure 

correlated well with subjective perceptions. However, the authors believe that it is unlikely that 

this facial muscle is the source of discomfort, it might well be, for example, a nerve fiber. 

In two related studies, Lin et al. examined the relationship between discomfort glare 

evaluated on the De Boer scale and the average eyeball movement speed (AEMS) characterized 

by fluctuations of the electrooculogram (EOG) (2014, 2015). The objective data were also 

collected through electrodes attached to the subjects. The higher the AEMS, the faster the eye 

moved. Lin et al. found a correlation between subjective responses and AEMS. In more glary 

conditions the AEMS was higher than in less glary conditions, especially for the senior subjects. 

Multiple physiological measures were assessed in recent years, yet no clearly identifiable, 

suitable objective measure has been established. However, such a measure would be clearly 
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useful, since control of discomfort can be achieved through an understanding of the processes 

which give rise to it (Boyce 1981). 

2.5 Summary of the Research Gaps 

Discomfort glare has been studied for decades, however, it is rarely calculated in lighting 

practice. LEDs are finding widespread use in outdoor applications. These sources have the 

potential to cause more glare than conventional lighting systems due to LEDs’ high luminance.  

The first step in the direction of facilitating discomfort glare calculations from small, high 

luminance sources in outdoor nighttime environments is to examine four variables – the 

luminance of the glare source, its solid angle, its position, and the background luminance – with 

regards to their effect on humans’ judgements of discomfort glare. Since subjective responses are 

known to have high variability (Bennet 1977b), it is highly desirable to include objective 

measures of discomfort glare (in addition to a subjective measure) that may offer an increase in 

the predictive reliability of data. Previous studies showed that some objective (physiological) 

measures correlate well with discomfort glare perception (Berman et al. 1994, Lin et al. 2014, 

Lin et al. 2015). Moreover, studying subjective and physiological measures simultaneously 

might give a deeper insight into the humans’ responses to discomfort glare.  

If multiple metrics are available, one might wonder why not to use one of them when 

assessing discomfort glare from small, high luminance glare sources? The main reason is that the 

predictive utility of existing discomfort glare formulae for this specific application of nighttime 

outdoor environments is questionable due to their limitations.   

The CIE outdoor sports and area lighting glare formula (1994) is restricted to the viewing 

directions below eye level, and glare becomes infinitely large when one looks directly at the 

glare source - the angle between the light source and the line of sight appears in the denominator. 
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The Schmidt-Clausen and Bindels formula (1974) for automobile headlamps also approaches 

infinity when one looks directly at the glare source. In this case, neither metric produces 

meaningful results.  

Bullough’s et al. outdoor discomfort glare model is based solely on illuminances (2008). 

In Bullough’s et al. further studies (2011, 2012), the authors found that, in addition to 

illuminance, glare source luminance plays a significant role in discomfort glare when the light 

source is larger than 0.3º in visual size. Bullough’s et al. metric does not directly consider other 

factors, such as the solid angle of the glare source, that are known to significantly contribute to 

the perception of discomfort glare. In addition, this metric is new and needs further validation. 

One other discomfort glare metric applicable to outdoor nighttime environments is the 

road lighting formula (CIE-31 1976), which was developed for specific road lighting 

installations. Therefore, it is only applicable for very limited conditions (for example, the 

minimum number of light sources per kilometer has to be 20). Moreover, according to the later 

CIE document (115-2010) “it resulted in anomalies”. Therefore, this metric was excluded from 

this research.  

The UGR is used in many countries, and it is the most promising metric in interior 

lighting (Boyce 2014). It comprises the best parts of discomfort glare formulas known at the time 

(CIE-117 1995). A number of exploration attempts to extend the UGR formula to various 

applications were made previously (Sendrup 2001, Fisekis et al. 2003, Takahashi et al. 2007). 

Therefore, it seems like a logical step to test the performance of the UGR small source extension 

(sources with an area of 0.005 m2 or less) and to investigate whether it can be extended to 

outdoor nighttime environments. Consequently, this accomplishes another task – validation of 
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the UGR small source extension with human subjects in dark environments, which was not fully 

validated before (Eble-Hankins and Waters 2004). 

To encourage the use of a discomfort glare metric, the first step is to determine which 

existing metric predicts discomfort glare best when compared to humans’ judgements in the 

given application.  
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CHAPTER 3 – METHODOLOGY OF THE EXPERIMENT 

The most certain way to succeed is always to try just one more time. 
-Thomas A. Edison 

 
This chapter covers the methodology used for the discomfort glare experiment in this 

research. Variables, levels, and methods are described along with the reasoning behind the 

choices. A detailed description of the apparatus, measurement equipment, and the controls 

software is provided. The calibration of the apparatus and the measurements collected are 

explained. The EMG integration and eye tracking analysis software are described. Finally, a 

justification of the excluded subjects, a detailed description of the subject sample, and a thorough 

description of the data collection procedure concludes this chapter. 

3.1 Independent Variables and Levels  

Four independent variables were used in this study: luminance of the glare source, its 

position in the field of view, its solid angle, and luminance of the background. It has been shown 

in the literature that these variables are likely to have a significant effect in outdoor nighttime 

environments, because they are the major factors that are known to influence discomfort glare 

perception (Benz 1966).  

3.1.1 Luminance of the Light Source  

Three levels of light source luminance were chosen: 20,000; 205,000; and 750,000 cd/m2 

(Table 3-1).  The idea was to study small, bright sources such as LEDs that can have very high 

luminances (Tyukhova and Waters 2014). The highest luminance level in this study was 

determined based on three factors: field measurements; duration of afterimages; and source 

uniformity.  
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First, in June 2014, field measurements were completed using a luminance meter (LS-

110) and high dynamic range imaging (HDRI) technology at Westside Tennis Courts in Omaha, 

Nebraska - as one example of outdoor nighttime lighting - to estimate the luminaires’ luminance 

in outdoor LED projects. Luminances as high as approximately 537,000 cd/m2 were measured, 

which served as the basis for the highest luminance used in this study.  

Second, the higher the luminance, the stronger the afterimage effect. Therefore, a longer 

adaptation time is needed to minimize the aftereffect. Since the focus of this research is 

discomfort glare, the highest luminance had to be chosen such that it does not create long lasting 

afterimages (scotomatic glare (Mainster and Turner 2012)). Otherwise, a longer adaptation time 

would be necessary, which would prolong the test, fatigue the subjects, and influence the results 

(see section 3.5). Therefore, the highest luminance had to be balanced with the duration of the 

required adaptation time.  

Third, during the developmental stages of the apparatus, it proved to be difficult to create 

a uniform light source of high luminance. Therefore, a balance between the required highest 

source luminance and the maximum source uniformity had to be found. For the highest 

luminance in this research (750,000 cd/m2), the luminance achieved at the center was 20% higher 

than the luminance at the circumference of the source, which was considered acceptable in this 

study (Wallace and Lockhead 1987). 

The three luminance levels (see Table 3-1) were chosen as perceptually equally spaced 

based on the approximate relationship between luminance and brightness known as Stevens’s 

power law (DiLaura et al. 2011). For a single surface seen in isolation, brightness is computed as 

follows: 

 
B = α ·L�.��  

(3-1) 
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Where 

B is brightness; 

α is a constant; 

L is the object luminance, in cd/m2. 

Table 3-1. Variables and levels used in this study 

Luminance of the light source (average) 20,000; 205,000; 750,000 cd/ m2 
Position of the light source 0°; 10° 
Solid angle of the light source 10-5; 10-4 sr 
Luminance of the background (average) 0.03; 0.3; 1 cd/m2 
Number of sources in the field of view 1 
Color temperature of the light source 5700 K 
Task/no task for the subjects No Task 
Uniformity of the light source Uniform light source (about 20% non-

uniformity) 
The distance between the subject and the light source 1 meter 
Viewing technique  Momentary. 3 flashes (1.2 seconds “on”; 

1.2 seconds “off”) 
Adaptation time in one condition 49.2 seconds 

 
3.1.2 Position of the Light Source 

Two levels of position were chosen for this study: 0˚ and 10˚ (Table 3-1). These two 

positions represent conditions when subjects look directly at the glare source (direct viewing) 

and close to the point of fixation (peripheral viewing) respectively. 

A position of 0˚ accounts for a frequently occurring situation when subjects look directly 

at the glare source (e.g. Putnam and Faucett 1951, Bullough 2008). It is a situation in which the 

outdoor sports and area lighting discomfort glare metric (CIE 112-1994) and the motor vehicle 

lighting metric (Schmidt-Clausen and Bindels 1974) predict infinitely large glare, and, therefore, 

become inaccurate. In his comments to Bullough’s et al. 2008 paper, Boyce mentioned that 

viewing light sources directly is not natural behavior, although this is a controversial point. Vos, 

for example, suggests that observers tend to look at the glare sources directly (2003). The author 

proposed the idea that people might have a “phototactic” reaction (attraction) to light, and that 
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discomfort might be caused by the conflict between this attraction reaction to light sources and 

the avoidance of them (Vos 2003). A position of 10° accounts for the peripheral viewing. This 

level was previously used in other research papers (e.g. Benz 1966). A glare source at 10° has the 

potential to cause more glare than a source located farther from the line of sight (Benz 1966), 

therefore, it is also included in this research. 

3.1.3 Solid Angle of the Light Source  

Two levels of solid angle (size) were chosen for this study: 10-5 and 10-4 sr (Table 3-1). 

Both sizes fall under the definition of small source (CIE 146,147-2002) and fall into the range of 

angles found in outdoor lighting such as 1.1x10-3 – 10-6 sr (Putnam and Faucett 1951). Sources 

smaller than 10-5 sr were not of interest in this study. For example, as Putnam and Faucett 

showed (1951), glare sources smaller than 10-5 sr create very high BCD brightness. This means 

that very high BCD may not be uncomfortable, if the source is extremely small.  

3.1.4 Luminance of the Background 

Three levels of background luminance were chosen for this study: 0.03; 0.3; and 1 cd/m2 

(Table 3-1). These levels were based on field measurements completed in outdoor nighttime 

environments and previous studies with low background luminances (e.g. Putnam and Gillmore 

1957, Bennett 1976, Li et al. 2006).   

In June 2014, field measurements of background luminances were completed at two 

locations: Westside Tennis Courts and on a parking lot near the TD Ameritrade Park baseball 

stadium in Omaha, Nebraska (as two examples of outdoor nighttime environments). The 

luminance of the sky directly overhead was in the range of 0.01-0.09 cd/m2 and that of the sky 

that appears brighter in the immediate surround of luminaires was in the range of 0.19-10 

cd/m2.  
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Previous studies were also guiding the choice of levels. For example, Li et al. 

demonstrated that dark backgrounds in residential areas have luminances of approximately 0.2 

cd/m2 and in administration areas 2 cd/m2 (2006). In other studies, the adaptation (background) 

levels for outdoor lighting were approximately in the range of 0.034 – 34.26 cd/m2 (Putnam and 

Fauccett 1951, Putnam and Gillmore 1957). 

Based on the measurements and previous studies, the initial idea was to look at 0.01 

cd/m2 as the lowest background luminance. However, during the early stages of the apparatus 

development, background luminances lower than 0.03 cd/m2 were not possible to create due to 

equipment limitations (see section 3.6.1). Therefore, based on 0.03 cd/m2 as the lowest level, the 

investigator chose the remaining levels such that they are perceptually equally spaced, similar to 

section 3.1.1. 

3.2 Dependent Variables 

Three dependent variables were used in this study: a subjective measure – the differential 

scale reported in Fischer’s paper (1991); and two physiological measures – the pupil diameter 

and the EMG recordings of orbicularis oculi (the principle muscle responsible for closing the 

eyes). 

A differential scale method was chosen for this study.  In general, this method has its 

shortcomings, but it produces valid data (refer to section 2.4.1). Among a great variety of 

available differential scales, the scale from Fischer’s paper was chosen (1991, it appeared in 

Bodmann et al. 1966 with slightly different labels) (Table 3-2). The reasons for this choice are 

described in the following paragraphs.  

 

 



www.manaraa.com

43 
 

Table 3-2. Subjective scale used in this study (Fischer 1991) 

0 No discomfort glare 
1 Glare between non-existent and noticeable 
2 Glare noticeable 
3 Glare between noticeable and disagreeable 
4 Glare disagreeable 
5 Glare between disagreeable and intolerable 
6 Glare intolerable 

Despite the fact that the De Boer scale and its modifications are most frequently used in 

outdoor nighttime environments, the De Boer scale seems to be confusing for subjects. In 1990, 

Gellatly and Weintraub conducted an experiment in which subjects had to order five descriptors 

in the way they perceived that these labels describe different degrees of glare. Most of the 

subjects reversed the scale when compared to the De Boer scale; they assigned higher numbers 

to more uncomfortable situations. For clarity Gellatly and Weintraub proposed to have zero in 

the scale with a descriptor of ‘no discomfort’. 

There is some evidence that subjects are able to reliably distinguish between 

approximately seven categories of a unidimensional stimulus, and this is apparent for a broad 

range of sensory judgments (Miller 1994). With more than seven categories confusions become 

more frequent (Miller 1994). 

The scale (Fischer 1991) meets three recommendations mentioned above, namely - 

smaller numbers in the scale mean less discomfort; the scale has a category of zero with the label 

“no discomfort glare”; and it has seven categories. In addition, previous research showed that 

oftentimes subjects could not reconstruct the scale from memory, even if they had worked with 

the scale before (Gellatly and Weintraub 1990). Using Fischer’s scale, subjects have to 

remember only four categories – no discomfort glare, noticeable, disagreeable, and intolerable 

(the other three labels lie between them).  Data quality is better when all scale points are labeled 

with words, and this is also the case in the scale reported in Fischer’s paper (1991).  
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The procedure and instructions can significantly affect subjects’ discomfort glare 

assessments (Bennett 1972b).  Clear instructions should be provided to the subjects, since even 

commonly used terms are frequently misunderstood (Maruyama and Ryan 2014). For this 

reason, carefully phrased instructions and practice trials were used in this study (section 3.12). 

Two physiological measures were collected: pupil diameter, measured with a video-based 

eye tracking device (ETL-100 by ISCAN), and EMG activity of orbicularis oculi recorded with 

the Focus EMG Machine (by TeleEMG). 

With the available technology, tracking and recording of the pupil diameter is relatively 

straightforward. Even though the role of the pupil in discomfort glare is not very clear, recording 

the pupil diameter is worth the effort. As recent papers show, there is a significant correlation 

between pupil diameter and discomfort glare (Stringham et al. 2011, Lin et al. 2015).  

Berman and colleagues demonstrated that the EMG activity of the muscles around the 

eyes showed some correlation with subjective assessments (Berman et al. 1994). Therefore, 

EMG readings were also recorded in this study. The goal was to explore the relationship between 

the discomfort glare responses and muscular activity, expressed through the Muscle Activation 

Index (MAC) (see section 3.9).  

3.3 Control Variables 

The number of glare sources in the field of view, the color temperature of the glare 

source, the uniformity of the glare source, and the presentation technique were controlled. 

Subjects did not have any additional task during glare assessments.  

Subject individual-difference variables such as age, eye color, gender, sensitivity to light, 

and others were not controlled, although this information was collected for each subject. Other 
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variables related to the subject, for example, mood, amount of caffeine intake, or amount of sleep 

were not controlled, nor was that type of information collected. 

3.4 Viewing Technique  

The momentary viewing technique of the stimulus was chosen for this study. This 

technique was selected from the three available viewing techniques as specified by Bennett 

(1971), namely – continuous viewing, momentary viewing, and the look-up technique. A number 

of authors used the momentary technique in their experiments (e.g. Putnam and Faucett 1951, 

Luckiesh and Guth 1949). Typically, the flashing sequence consists of three one-second “on” 

periods each separated by one-second “off” periods, with this sequence followed by a five-

seconds “off” period. In this research, the sequence consisted of three 1.2 seconds “on” periods 

separated by 1.2 seconds “off” periods, with this sequence followed by a 4.8 seconds long “off” 

period until the start of the adaptation time of the next experimental condition (see sections 

3.6.3.2 and 3.6.3.3 for details).   

The idea of this research was to mimic glancing at the light source, because - as Putnam 

and Faucett noted in their paper - a steady fixation on glare sources rarely happens in lighting 

practice (1951). In outdoor nighttime environments, drivers, for example, might glance at the 

oncoming car headlights or at fixed road lighting as they drive by. In another example, 

pedestrians located “off-site” the illuminated property (for example, a baseball stadium viewed 

from a residential property located near the stadium) may briefly look directly at the luminaires 

located near the line of sight.  

Putnam and Faucett (1951) claimed that it is easier to evaluate the sensation of brightness 

from a short versus a prolonged exposure. In addition, Hopkinson pointed out that the 

flashing/momentary technique gives reliable results (1957). Bennet said about the two techniques 
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– momentary and continuous – “the differences among the techniques are quite small, one is 

tempted to say ‘negligible’ ” (1971). Momentary exposure keeps the observer’s adaptation close 

to that of the background brightness and reduces the foveal adaptation change involved in a 

steady fixation (Putnam and Faucett 1951), both of which are desirable. 

3.5 Adaptation Time 

Adaptation is a process that changes the sensitivity of the visual system; it is one of the 

most controversial issues in glare research (Poulton 1991). For example, Einhorn mentioned that 

in the UGR the adaptation luminance (Lb) is debatable, because it does not include the direct 

illuminance at the eyes that also contributes to adaptation (1998). For the visual system to be 

able to function well, it has to be adapted to the prevailing lighting environment (DiLaura et al. 

2011). Therefore, it is crucial to understand how much time a subject needs to adapt between the 

conditions. 

The adaptation time in each experimental condition was 49.2 seconds. It is the time 

between the start of each experimental condition and the time when the flashing sequence starts 

(see Figure 3-34). It was determined as the balance between two key issues: the duration of 

afterimages and the length of the session.   

The first issue was concerned with the duration of afterimages after viewing high 

luminance stimuli. An afterimage is a visible trace of a primary stimulus that appears even 

though the stimulus is no longer present (Virsu 1977). If the glare luminance is too high, then 

potential carry over effects may exist, affecting subsequent discomfort glare assessments. 

Therefore, one needs to allow sufficient time for adaptation to occur. The second issue to address 

was to make sure the experiment was not too tiring.  Bennett mentioned that it is important to 

make sure the experiment is not too long, so that the observers do not get fatigued (1979b). In his 
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study, observers reported discomfort glare experiment as “boring, long, nebulous, confusing, hurt 

eyes, etc.” (1979b).  

To examine the impact of afterimages, one needs to understand the range of luminances 

presented in this study – at the lower end, the luminance is determined by the dark background 

(0.03 cd/m2); at the higher end by the glare source (750,000 cd/m2). The low end falls into the 

range of mesopic vision, when both cones and rods are active (DiLaura et al. 2011). According 

to the IESNA Lighting Handbook, “a few minutes are sufficient for adaptation to occur”, when 

the change in retinal illumination happens within the range of operation of the cone 

photoreceptors (2011). The cone threshold is at 0.001 cd/m2 (DiLaura et al. 2011); therefore, a 

few minutes should be adequate for this study. At the highest end of the luminance range used in 

this research are glare sources that are viewed directly at the line of sight, which might cause 

afterimages (scotomatic glare) (Mainster and Turner 2012, Feresin 1992). Reidenbach showed 

that an afterimage on a human retina after an exposure from a white high-brightness LED 

(approximately 110,000 cd/m2) remains nearly constant with a slight decrease during 

approximately 10 minutes (2007).  However, he argues that the effect of the afterimage on visual 

acuity is eliminated within 30 to 60 seconds.   

A pilot study with five subjects in this research showed that the duration of afterimages 

after an exposure to three flashes (1.2 seconds “on” periods separated by 1.2 seconds “off” 

periods) in the worst-case scenario was about 3-5 minutes (until afterimages fully disappeared) 

as reported by the subjects. The worst-case scenario was caused by the largest glare source (ω = 

10-4 sr) directly on the line of sight with the LED operating at a current of 850 mA. Luminance 

of the LED operating at a current of 850 mA was measured, but found inaccurate due to the 

equipment problem that was revealed later. However, it would be well over 1,000,000 cd/m2. 
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Note that the current used in this pilot study was twice as high as the one actually used in the 

main experiment (410 mA, 750,000 cd/m2). An adaptation time of 1-3 minutes was considered to 

be reasonable in this study. 

To finalize the choice of the adaptation time, the experimenter had to determine how long 

a subject can be attentive in a dark environment between conditions. A pilot study showed that 

long periods between flashing sequences (more than one minute) in a steady position in a dark 

environment without a task caused fatigue in some cases and, therefore, might have influenced 

the assessments. Therefore, the adaptation time served as a compromise between allowing 

sufficient adaptation time and minimizing fatigue. The adaptation time used in this study was 

49.2 seconds. The entire experimental session per subject was scheduled for 1.5 hours. 
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3.6 Apparatus  

The light bulb was an invention with 1000 steps. 
-Thomas A. Edison 

 

This section describes the apparatus that was custom-designed and custom-built with the 

assistance of Musco Sports Lighting specifically for this research to study discomfort glare from 

small, high luminance light sources in outdoor nighttime environments. Four primary factors that 

affect discomfort glare perception – glare source luminance, its size, its position, and background 

luminance – were controlled through a laptop via custom controls software. Fast and convenient 

controls were implemented to decrease the duration of the experiment and fit a larger number of 

experimental conditions in a given period of time.  The apparatus was designed to have the 

flexibility to conduct glare research beyond the current study. For example, the solid angles of 

the glare sources could be changed from 10-6 sr to 10-3 sr.  

3.6.1 Description of the Apparatus and its Capabilities 

The apparatus consisted of several major parts (Figure 3-1 through Figure 3-7): a large 

sphere, a subject positioning station, two glare sources, a background source, the measurement 

equipment, and the supporting structures/mounts for the equipment. 

Many authors have previously used a sphere/hemisphere in the studies of discomfort 

glare (e.g. Putnam and Gillmore 1957, Luckiesh and Guth 1949, Lulla and Bennett 1981), 

because it provides a uniform adaptation luminance. For this reason, a sphere became a logical 

choice in this study. 
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Figure 3-1. Three-dimensional model of the apparatus (not to scale).  

Shown in semitransparent shading 
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Figure 3-2. Elevation view of the apparatus (not to scale). Shown in semitransparent shading 
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Figure 3-3. Plan view of the apparatus (not to scale). Shown in semitransparent shading
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Figure 3-4. Front view of the apparatus (not to scale)  

   

Figure 3-5. Apparatus from behind the subject 
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Figure 3-6. Front view of the apparatus with a glare source switched on 

 

Figure 3-7. Apparatus, equipment, and the controls software 
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The custom-made sphere was 2 meters in diameter. Due to the time and cost 

consideration, an affordable way to construct a uniform sphere was devised. The core of the 

sphere was made from a helium parade balloon (Figure 3-8). While constantly inflating the 

balloon, the sphere was coated with a thin layer of Line-X (spray-on rubber protective coating). 

After the coating hardened, it was covered with multiple layers of Closed Cell Spray 

Polyurethane Foam to give the sphere structure. After 24 hours of cure time, an additional layer 

of Line-X was applied to protect the foam from damage during transit to the research facility. 

Once the final layer of Line-X cured, openings were cut, so that the subject could enter the 

hollow sphere. The sphere had to be cut into two parts, so that it could be brought into the lab (a 

dark room about 4.6 m x 4.6 m x 4.3 m in size, covered with black felt (ρ=0.006)). Once inside, 

the parts of the sphere were connected, reinforced with straps, and placed on a stand. The inside 

of the sphere was coated with multiple layers of black paint. 

  

Figure 3-8. Core of the sphere made from a helium parade balloon (left), sphere during the 

early stages of construction (right) 
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The subject positioning station consisted of a chinrest and a chair. A chinrest was used to 

fix the subject’s head position; chinrest was mounted on a support bar intersecting the sphere 

(Figure 3-1). The observer’s eyes were located at the center of the apparatus, so that the distance 

between the observer’s eyes and the glare sources (or radius of the sphere) was 1 m. The 

expected position of the eyes was estimated with a rotary laser level (Figure 3-9) and the chinrest 

was accurately marked. During the experiment the subjects had to adjust, if necessary, the height 

of the chair to match their eye level and the mark on the chinrest (this was checked by the 

experimenter).  

The glare sources were mounted on a metal pedestal behind the two openings in the 

sphere, which were located in the visual field of the subject (Figure 3-10, Figure 3-11). One of 

the openings was on the direct line of sight (the 0º position), and the second one was at 10º above 

the fixation point. The estimation of the glare source position at 0° was done with a laser pointer 

(Figure 3-12). During the flashing sequence, the subjects always looked at the 0º position, which 

could either be a glare source or a fixation point, depending on the experimental condition. This 

was checked through the eye tracking camera. During the adaptation time subjects could move 

their eyes without moving their heads. 
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Figure 3-9. Estimating the eye level with a rotary laser level and marking the chinrest 

 

Figure 3-10. Mounting of the glare sources on the metal pedestal (not to scale) 
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Figure 3-11. Mounting of the glare sources behind the sphere 

 

Figure 3-12. Estimation of the glare source position for the 0° view 
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The luminance of the background was controlled with a 9-Watt A19 5700K LED lamp 

(by Magic Lighting Inc.) mounted above the subject’s head. To achieve the highest uniformity of 

the background luminance possible, the background source should be located exactly at the 

center of the sphere. However, because the position of the subject’s eyes was more critical (to 

have the same distance from the eyes to the glare sources located at different positions), the 

subject’s eyes were located at the center instead. The light from this background source was 

shielded from the subject with a screen mounted on the chinrest, such that no spilled or scattered 

light entered the subject’s eyes (Figure 3-13). Black velvet (ρ=0.006) covered the chinrest and 

the screen to absorb any unwanted spill light (Figure 3-14).  

    

Figure 3-13. Screen mounted on the chinrest 
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Figure 3-14. Chinrest and the screen covered with black velvet (ρ=0.006) 

The measurement equipment that was present in the sphere during the experiment 

included the following: the Focus EMG Machine that was attached to the back of the chair, the 

illuminance meter head attached to the vertical bar on the right side of the subject, and the eye 

tracking device placed on the supporting structure in front of the subject (see section 3.6.2). 

The shape of the background source was chosen as close to a sphere as possible (A19 

LED light bulb) to uniformly illuminate the background. The inherent imperfections of the 

balloon core made the sphere look non-uniform. Initially, to provide a highly uniform 

background luminance, the inside of the sphere was supposed to be covered with black velvet 

(ρ=0.006). In that case, the initially desired lowest luminance (0.01 cd/m2) was easily achieved. 

However, the highest background luminance (1 cd/m2) was not achievable with the available 

equipment. In addition, it was unclear how to cut the fabric to eliminate seams in the subject’s 



www.manaraa.com

61 
 

field of view, and how to attach the fabric to the sphere. Any other type of fabric with higher 

reflectance would still lead to the same problem of cutting and attaching it to the sphere. 

The next trial attempted to use iron-on backing material with black fabric on top of it. 

The white backing material contained glue particles that melted and attached to another fabric 

when heat was applied to it during ironing. The backing material was glued onto the sphere with 

spray adhesive, and the black fabric was ironed onto the sphere afterwards. This method worked 

well for small test patches. However, large pieces of fabric were required, such that few seams 

were present in the subject’s field of view. Nevertheless, ironing on the large pieces of fabric 

created multiple bubbles and imperfections thus creating unacceptable non-uniformity. 

As the final solution, backing material glued to the sphere was painted with black paint 

(6258 Tricorn, Sherwin-Williams) at least four times to achieve maximum uniformity (Figure 

3-15). HDRI images of the resulting background luminances are given in Appendix A.  

 

Figure 3-15. View from the position of the subject  
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Light from the glare sources reflected off of the black sphere, chinrest, and subjects’ 

clothing increased the background luminance by an amount that was difficult to estimate.  For 

this reason, in addition to placing the glare sources outside the sphere, spill light in the sphere 

was minimized by covering the sphere’s entrance with black velvet (ρ = 0.006) and hanging a 

curtain of the same material on a bar over the entrance (Figure 3-1).  All parts that were facing 

the glare source were either painted black or covered with velvet (Figure 3-14). Black velvet was 

also stretched from the chinrest to the sides of the support bar intersecting the sphere (Figure 

3-6). This minimized the light reflected from the subjects’ clothing.  

Two power supplies, the background source controller, and two laptops - one for the 

controls software, another one for eye tracking - were placed on a little table to the right of the 

sphere (Figure 3-7). The experimenter had easy access to all control devices, and the subject in 

the apparatus was visible through an opening in the curtain to verify that the experiment ran 

correctly.  

3.6.1.1 Glare sources  

Each glare source consisted of the following elements: an LED chip mounted on a heat 

sink, a diffuser, a black baffle, a motorized aperture, a metal plate (the base of the glare source), 

and a box covered in black velvet on the inside (Figure 3-16 through Figure 3-20). Due to time 

constraints and limited availability, two different apertures were used (one with the maximum 

diameter of 36 mm and one with 50 mm). The two glare sources had equivalent characteristics, 

except that the box and the aperture were bigger in one case. However, the openings and the 

distances between the parts in both cases were the same.  
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Figure 3-16.  Three-dimensional model of the glare source with the box removed (not to 

scale) 

 

Figure 3-17. Plan view of the glare source with the box removed (not to scale) 
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Figure 3-18. Photograph of the glare source with the box removed 

  

Figure 3-19. Photograph of the glare source with the box and the diffuser removed 
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Figure 3-20. Photograph of the glare source while inserting the diffuser 

Each glare source was built around the Cree XLamp LED chip (CXA2590) (Table 3-3) 

mounted on a large heat sink (custom configured 5052-H34 - Aluminum mounting 

platform/heatsink). Figure 3-21 shows how the temperature of the LED chip was measured. The 

heat sink was crucial for the operation of the chip, since without it the case temperature of the 

LED reached approximately 60º C within minutes after switching it on and kept growing rapidly. 

In addition to using a large heat sink, an active cooling fan was also added (Figure 3-22). The 

metal plate, the base of the glare source, was wider in the back so that it could accommodate the 

LED chip placed on the heat sink (Figure 3-16, Figure 3-18). 
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Table 3-3. Main characteristics of Cree XLamp LED chip (CXA2590) 

Characteristic Value 
Forward voltage 69 V 

Maximum drive current 1800 mA 
Color temperature 5700 K 

CRI 80 
Luminous flux at 1200 mA 9000-9500 lm 

  

Figure 3-21. Measuring the case temperature of the LED chip with a thermocouple  

   

Figure 3-22. Active cooling fan of the glare source – photograph (left) and 3D model (right, 

not to scale) 
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For the purpose of this study, the glare source had to have a high luminance and be 

uniform. Achieving both factors simultaneously was a challenging task. Most light sources are 

non-uniform, and when a diffuser is used to increase uniformity, it reduces the source’s 

luminance considerably. Therefore, a balance between the desired maximum source luminance 

and uniformity had to be found. The diffuser, a 60˚ Light Shaping Holographic Diffuser (by 

Luminit), was placed in front of the LED chip, which resulted in non-uniformity of 

approximately 20% between luminance in the center and the circumference of the source 

(measured with a luminance mapping camera P501F by Westboro Photonics).  

The baffle was located between the motorized aperture and the diffuser. The main 

purpose of the baffle was to absorb any undesired spill light. Baffles were cut out of 0.5 

millimeter thin metal sheets (Aluminum 5052-H34) on an industrial cutting machine (Prototrak 

Edge K2). These baffles were then sprayed with a general performance spray adhesive (Loctite) 

and covered with black velvet with a reflectance of ρ = 0.006 (Figure 3-23, Figure 3-24). The 

metal box that covered the front part of the plate extending from the aperture to the diffuser 

(Figure 3-16, Figure 3-22) was also covered with velvet on the inside using the same procedure 

to absorb any unwanted spill light. At the given distance between a subject and the glare source 

the diameter of the opening in the baffle had to be large enough (d = 57 mm), so that it could not 

be seen by the subjects. Each baffle was fixed in a cavity on the metal plate with Loctite Epoxy 

Instant Mix.  

The glare sources were placed outside of the sphere on a metal pedestal to minimize the 

potential spill light (Figure 3-10, Figure 3-11). Initially, the base of the light source was longer, 

meaning that the LED chip was placed farther outside the sphere. Three black baffles were used 

in front of the diffuser to further minimize the effect of any potential spill light.  However, 
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because of the ocular dominance problem described below, the design of the glare source had to 

be modified. The base plate was cut shorter, such that the distance between the aperture and the 

LED chip changed from 305 mm to 103 mm. 

    

Figure 3-23. Covering baffles with black velvet 

 

Figure 3-24. Baffles before being covered with velvet and after 

An adjustable motorized aperture (by SK Advanced Group) that changed the solid angle 

of the glare source was located at the front end of the metal plate. Figure 3-25 shows the aperture 

in front of the diffuser with the LED chip switched on. Figure 3-26 shows the aperture set at 

various solid angles. Because of time constraints and limited availability, two different apertures 

were acquired. The first one had a diameter range of 0 to 50 mm (08IDM-050M, controller 

08SMC-1) for the glare source located at 0°, and the second one had a range of 0 to 36 mm 

(08IDM-1M, controller 08SMC-1) for the glare source located at 10°. The main advantage of 



www.manaraa.com

69 
 

using motorized apertures was the ability to change conditions fast and precisely and thus 

decrease the duration of the experiment. Moreover, the subjects experienced less fatigue than 

during longer experiments that would have been the result of using manual apertures.  

 

Figure 3-25. Motorized aperture (0 – 36 mm) in front of the diffuser and the LED chip 

 

Figure 3-26. Motorized aperture (0 – 36 mm) set to various solid angles.  

From left to right – fully closed, 10-5 sr, 10-4 sr, 10-3 sr (based on 1 m viewing distance) 

Placing the light sources behind the sphere helped to reduce the amount of spill light. 

However, a new problem arose – ocular dominance (Sekuler and Blake 1990), which is the 

relative strength of the visual cortex connection to both eyes. Some cortical cells respond more 

vigorously to left eye stimulation, others to right eye stimulation (Sekuler and Blake 1990). 

Ocular dominance makes the aiming of the glare source placed deep behind the sphere a critical 

issue. If the ray of light were not perfectly aimed at the nose between the eyes, then the 

experimental conditions would not be the same for both right and left ocular dominant people. 

This causes an additional source of variability not attributable to the studied phenomenon. One 
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had to assure that both eyes see the same luminance. Therefore, the source was placed closer to 

the sphere by shortening the front part of the base plate. The distance between the sphere and the 

light source was determined based on the compromise between ocular dominance and spill light 

issues. Appendix B provides readings of the background luminance with and without spill light 

for the final design of the glare source. These measurements show how using the above 

mentioned techniques helped minimize the influence of spill light.  

3.6.2 Measurement Equipment  

Two different sets of measuring equipment were used – one set during the experiment, 

and another between the tests with subjects.  

The measurement equipment used during the experiment with subjects included an 

illuminance meter with the remote head, a Focus EMG Machine, and a video-based eye tracking 

device. The illuminance meter was a Konica Minolta T-10 meter (body serial # 36621105) with a 

remote head (serial # 56611034). The meter was calibrated by Konica Minolta on May 28, 2014, 

which was valid for a year (calibration certificate no. KMSA-001-00-019059). The remote head 

was installed inside of the sphere on a bar on the right side of the observer (Figure 3-14, Figure 

3-9). It measured the illuminance from the background source that was reflected off of the 

background when the glare source was switched off (the direct component was occluded), and 

the total illuminance when the glare source was on during each of the three flashes (see section 

3.6.3.2). The illuminance measurements served as a quality check to verify that subjects saw 

stimuli in the expected ranges.  

Another piece of equipment was the Focus EMG Machine (by TeleEMG, LCC). Prior to 

the start of each experiment, the electrodes were placed on the subject’s face, and plugged into 

the Focus EMG machine. The device was then attached to the back of the subject’s chair with 
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Velcro (Figure 3-27). The EMG machine comes equipped with its own software that allows 

manual control of the device. However, to enable automated data collection, it was integrated 

into the controls software written specifically for this study (section 3.9) 

  

Figure 3-27. Placement of the Focus EMG Machine on the back of the subject’s chair 

Finally, the piece of equipment used during the experiments was the eye tracking device 

(ETL-100 Remote by ISCAN). It was located on a stand attached to a support bar intersecting 

the sphere (Figure 3-1). The device was aimed at the subject’s eye, and it recorded data at a rate 

of 60 data points per second. The communication with the eye tracking software was done 

through the included ISCAN software (see section 3.6.3.1).  

The measurement equipment used between the experiments with the subjects included an 

illuminance meter (same as mentioned above), two luminance meters, a camera with a MAC 

laptop for HDRI photography, and an imaging photometer. This equipment was used to 

additionally check the apparatus consistency over time and to acquire the measurements 

necessary for discomfort glare metrics calculations (see section 4.1.2).  

The luminance meters were a 1/3º Minolta LS-110 (serial # 79923018) and a 1º Minolta 

LS-100 (serial # 78913009). The meters were calibrated by Konica Minolta on November 20, 

2014 and on May 28, 2014 respectively, and were valid for a year (LS-110 calibration certificate 
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no. 001-00-021899; LS-100 no. KMSA001-00-019060). The meters measurements of the glare 

sources and background luminances were conducted to ensure that the apparatus’ characteristics 

did not change over time. 

The camera used for taking HDR images of the background luminance was a Canon 

Rebel T1i with a 16-35 mm Canon lens. Two software programs – Photosphere and Radiance – 

were used for processing the images on the Mac laptop. 

The imaging photometer used was a P501F model (by Westboro Photonics). Note that the 

photometer was not calibrated and hence only used for relative measurements, for example, 

uniformity of the source. Also, the aiming of the glare sources was verified with the imaging 

photometer. 

3.6.3 Controls Software 

Software specifically written for this research controlled all the equipment, randomized 

the conditions presented to the subjects, and automatically recorded all data, except the eye 

tracking data that had to be recorded separately and manually. Such automated control of the 

conditions made the experiment fast, efficient, and convenient.  

The three following sections describe the software capabilities, the controls scheme, and 

the software creation and improvement. The latter section explains the rationale of some 

implementation choices. For example, a flashing sequence with one-second “on” and one-second 

“off” periods was initially targeted. However, for both “on” and “off” periods 1.2 seconds was 

actually used instead. 

3.6.3.1 Software Capabilities 

The software controlled two power supplies - one for each glare source, the controller for 

the background source, and two controllers for two motorized apertures (Table 3-4, Figure 3-28). 
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The software recorded inputs from both power supplies, illuminance meter, and the Focus EMG 

Machine. The eye tracking data were recorded on a separate laptop. 

Depending on which one of the predefined 36 lighting conditions was presented to the 

subject, the devices were set to the necessary levels (Appendix C). The power supplies 

determined the luminances of the glare sources. They also defined the position of the glare 

stimulus (0˚ or 10˚); depending on the condition, the position was changed by applying the 

necessary current to the glare source under test. The controller for the background light source 

changed the background luminance. Two motorized apertures changed the solid angles of the 

glare sources. 

Table 3-4. Equipment controlled by the custom software 

Device Characteristics/number Manufacturer 
Power supply 3646A DC Power Supply 0-

72V/0-1.5A 
Circuit Specialists, Inc. 

Controller P02C1-100_USB  USB Light 
Dimmer, AC Light Dimmer 
200W 2-Channel x 100W 
120VAC 60Hz Single Circuit 
with a USB Interface 

National Control Devices, 
LLC 

Motorized aperture controller 08SMC-1 SK Advanced Group 
Motorized aperture 08IDM-050M and  

08IDM-1M 
SK Advanced Group 

Illuminance meter T-10 Konica Minolta 
EMG machine Focus EMG Machine TeleEMG, LLC 
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Figure 3-28. Controls software scheme 

The software was written in C Sharp and enabled two modes of control – a manual 

control mode allowing the manual selection of the parameters for the experimental condition, 

and the auto test mode. The manual mode was mostly used during the development stage of the 

software and for preliminary testing of the stimuli. The auto test mode was used during the main 

experiment of this study.  

In the manual mode, the experimenter changed the conditions by moving the sliders or 

typing the numbers in the appropriate boxes (Figure 3-29). In the auto test mode, the predefined 

36 conditions were presented in a randomized order (through the Fisher–Yates shuffle algorithm) 

with minimal input from the experimenter (Figure 3-30). Subjective responses were entered 

manually through a pop-up window by the experimenter. The auto test ran without stops to 

ensure the same duration of the experiment for each subject. Nonetheless, a “Pause” button 

allowed stopping and resuming the experiment to handle unexpected situations.  
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Figure 3-29. User interface of the manual mode of the controls software 
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Figure 3-30. User interface of the auto mode of the controls software 
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Once the experimenter loaded the software, the first step was to open the USB ports to 

establish communication links between the software and the devices (Figure 3-31, Appendix D). 

The next step was to load the parameters file, which contained values for the state of all devices 

at the beginning of each condition (Appendix E).  

In the next step, if the manual test mode was used, the experimenter chose a file to which 

the data from the test were saved. After the experimenter set all the devices to their desired 

settings, the condition was presented to the subject. In the auto test mode, the experimenter chose 

a file containing a list of all predefined conditions, and a file to which the subject’s data were 

stored. The settings for the flashing sequence of condition 17 (taken from the file with predefined 

settings for all 36 conditions) are shown in Table 3-5. The settings during the adaptation time in 

each condition were specified in the code of the software.            

Table 3-5. An example of the settings for the condition 17 

Code of the predefined scenario #17 Explanation 
<Scenario Code="17">  
    <Source0>   Light source at 0˚  
      <voltage>72000</voltage>   72 Volts on the light source 
<current>110</current> 110 mA on the light source 
      <output>On</output> Light source would be switched on during the 

flashing sequence 
</Source0> End of settings for light source at 0˚ 
    <Source10> Light source at 10˚ 
      <voltage>72000</voltage> 72 Volts on the light source 
<current>50</current> 50 mA on the light source (this setting would 

not matter in this case, see the next line) 
<output>Off</output> Light source would NOT be switched on 

during the flashing sequence 
    </Source10> End of settings for light source at 10˚ 
    <backlight>90</backlight> Background light source set to 90 (see 

calibration tables in Appendix F) 
    <Aperture0>3</Aperture0> Aperture at 0˚ set to 3  
    <Aperture10>1</Aperture10> Aperture at 10˚ set to 1  
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Figure 3-31.  Opening USB ports to establish communication links between the devices and 

the controls software 
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For each condition and each subject the software recorded multiple data points and saved 

these data in a text document. A Microsoft Excel template parsed this text file and automatically 

calculated whether the illuminances recorded to the right of the observer’s eyes (Figure 3-32) fell 

outside the predefined ranges (Appendix G). This range was determined as ± 10% of the baseline 

values measured before the study had started. For every experimental condition, the controls 

software recorded the date and time when it occurred, the randomized condition number and the 

actual sequence number indicating when the condition was presented (the test index increasing 

from 1 to 36). Another  data point recorded a subjective response. Additionally, the time stamp 

and illuminance when the glare source was off (during the adaptation) were recorded. The time 

stamps, illuminances, voltages, currents, and power from both power supplies during the three 

flashes were also recorded. Finally, the last data point indicated whether the EMG data were 

valid, based on the electrodes impedance test. This test indicated whether the electrodes were 

properly attached to the subject’s face.  

The eye tracking device required its own laptop due to the technical constraints of the 

software - it did not run on any other laptop than the one it was initially installed on. Therefore, 

these data were recorded manually for each subject and each condition. The interface of the 

software is shown in Figure 3-33. Pressing the “Start Record” radio button started the recording 

at 60 Hz for a number of points defined a priori (Eye tracking laboratory manual). The recording 

automatically stopped after 12 seconds (720 data points) in this study. The file was saved 

through “Save ISCAN ASCII Data File as” option. An example file is too lengthy to include 

here, but a part of a file is shown in Appendix H.  
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Figure 3-32. Subject on the chinrest with electrodes attached to the face during the 

experiment 

 

Figure 3-33. ISCAN raw eye movement aquision software interface 



www.manaraa.com

81 
 

3.6.3.2 Controls Scheme 

The duration of one experimental condition was 60 seconds or 50 time steps (one time 

step = 1.2 seconds). A time step concept was used since the controls software code utilized half 

time steps. The simplified scheme of the events occurring during one experimental condition is 

shown in Figure 3-34. 

 

Figure 3-34. Timeline during one experimental condition 

Events during one lighting condition  

1) At the beginning of each condition, the software read the scenarios (conditions) file 

(the main settings are shown in Appendix C), and sent the commands to all devices accordingly 

(e.g. to the controller of the background source to set the background luminance to 0.3 cd/m2). 

The initial state of both apertures was closed. The background source was on; it created the 
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background luminance (adaptation) necessary for the experimental condition under test. The 

glare sources were in the “off” state (55 V, 0 mA). 

The subject adapted to the background luminance for 49.2 seconds (41 time steps). 

During the first 31.2 seconds (26 times steps) the subjects were allowed to look around without 

moving their head; the head was positioned on the chinrest. This helped subjects to relax their 

eyes, avoid fatigue, and boredom.  

2) At 31.2 seconds (the 26th time step), the fixation point (source at 0° position) was 

switched on. At this point, the subjects had to look at it at all times; the experimenter monitored 

the subjects through the eye tracking camera.  

3) The illuminance reading was collected at 43.2 seconds (the 36th time step) - the glare 

source was off, while the background source was on.  

4) At 49.2 seconds (the 41st time step), depending on the condition, one of the glare 

sources started to flash.  If the glare source at the 10º position flashed, the fixation point at the 0º 

position (on the line of sight) remained in the ‘on’ state. However, if the glare stimulus was 

presented at 0º, the fixation point was switched off, and the glare source at 0º started to flash. 

The software read currents, voltages, and power from both power supplies, and illuminances 

from the illuminance meter during each flash.  

5) After the flashing sequence, at 56.4 seconds (the 47th time step), a radio button window 

appeared for at most 2 minutes allowing the input of the subjective response.  

6) At 60 seconds (the 50th time step), if the subjective response were entered into the pop-

up window, then the software would proceed to the next condition until all 36 conditions were 

completed.  
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In case of unpredictable events, the experimenter could pause the automatic test sequence 

and resume upon resolution of the event. If the “Pause” button was pressed during the adaptation 

time, the software stopped immediately and waited for further actions. If “Pause” was pressed 

during the flashing sequence, the software did not stop immediately; it continued until the end of 

the sequence. At that time, the experimenter had a choice of either repeating the condition or 

proceeding to the next random condition. 

3.6.3.3 Software Creation and Improvement  

The two major challenges of creating such sophisticated controls software were to ensure 

reliable communication between the laptop and a number of devices that use different 

communication protocols, and to synchronize their performance. Many decisions during the 

development of the software were based on overcoming equipment limitations. This section 

addresses the major issues.  

Reproducibility and consistency of the light source presentations were of crucial 

importance. The experimenter had to ensure that all subjects saw the same stimuli. As previously 

mentioned, illuminances collected during the adaptation time and the three flashes served as a 

quality check for the consistency of stimuli (Figure 3-14, Figure 3-32). The voltage, current, and 

power readings of the sources were recorded for each experimental condition for each subject as 

additional quality metrics.  

During the software debugging stage, it was noted that the fixation point did not appear at 

all, despite the fact that it was programmed to do so. It happened because the aperture failed to 

change from the closed state (0 mm) to the fixation point state (approximately 2 mm in diameter) 

- the aperture blades needed a higher initial momentum to open. Therefore, in the auto sequence, 
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the aperture was programmed to open up to a larger diameter first, and then to decrease the 

diameter of the opening to the fixation point position, which solved the problem. 

During the calibration stage, it was noticed that illuminance readings differed 

significantly when measured multiple times during the same lighting condition. Illuminance 

measurements depended on whether the aperture’s current diameter was set from a previously 

larger diameter or a smaller one. For example, if in condition 15 the aperture was set to a solid 

angle of 10-5 sr from a condition with a solid angle of 10-4 sr, the illuminance at the eyes was 5.7 

lx. However, if the aperture was set to the solid angle of 10-5 sr from the fixation point state, then 

illuminance was 4.6 lx. Therefore, to ensure consistency, the aperture diameter was programmed 

to always increase from a smaller diameter to the diameter of interest. The only exception was 

the fixation point state mentioned above; it was always set from an initially larger diameter.   

The next challenge was the limitation of the LED/power supply reaction time. The 

predefined flashing sequence of the glare source was 1 second on – 1 off – 1 on – 1 off – 1 on, 

similar to previous studies (e.g. Putnam and Faucett 1951). The initial LED current was set to 

1000 mA in the “on” position, and 0 mA in the “off” position. However, ramping up the LED 

current to 1000 mA took the LED/power supply more than five seconds. Therefore, the LED 

current (thus the luminance of the flash) at the end of one second resulted in seemingly random 

numbers (e.g. 800 or 910 mA). This inconsistency was unacceptable when presenting stimuli to 

the subjects.  The current seemed to reach saturation at higher values. For this reason, the 

experimenter had to find the current that could be reached almost instantly and reliably. A 

current of 850 mA was the maximum consistent current that could be reached in a time period of 

less than one second.  
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The next challenge was similar in nature to the high current problem, but now for small 

currents. When the current was set to 10 mA, the LED did not flash at all. In this case, one 

second was not long enough for the power supply to ramp up to 10 mA. To enable proper 

presentation of all three flashes, a minimum voltage of 55 V was applied to the LEDs throughout 

the experiment. This new starting voltage allowed the LEDs to reliably ramp up to the full output 

in the given time frame. 

During the early stages of testing, the software crashed almost every single time when the 

experimenter ran the set of the 36 lighting conditions. Troubleshooting made it clear that the 

USB cables to the apertures were causing the issue. Since the apertures were located behind the 

sphere (Figure 3-10, Figure 3-11), they were connected to the laptop via the USB extension 

cables and a USB hub. These cables exceeded the maximum length allowed for passive USB 

cables. By specification, a passive USB cable has a limited maximum length that is based the 

propagation properties of electromagnetic fields. Therefore, an active extension cable was used 

(Tripp Lite model U026-016), which solved the instability problem of the software.  

The initial plan for the flashing sequence was 1 second “on” and 1 second “off” periods. 

During the time when the flash occurred, multiple communication steps took place between the 

devices. The glare source was set to its full output first (Figure 3-35), then voltage, current, and 

power readings were recorded from the first power supply and then from the second one. Finally, 

the illuminance during the flash was recorded. If the “on” period were too short, the data 

acquisition from all devices during the time when the source was fully on would not be 

completed. Instead, the readings resulted in random inconsistent numbers that were not 

representative of the actual condition. In this case, reliability could not be guaranteed. The 

solution is described in the paragraphs below.  



www.manaraa.com

86 
 

Initially, the commands to both power supplies and the illuminance meter were sent right 

after switching the glare source on, but this resulted in inconsistency of the readings. One had to 

account for the time it takes the LED to achieve its full output. Therefore, additional software 

was written to test the shape of the voltage and current waveforms, and the consistency of the 

illuminance readings (the user interface is shown in Figure 3-36 to Figure 3-38).    

The voltage waveform for the glare source positioned at 10° and set to 20 mA is shown in 

Figure 3-35. Note that the duration of the stimulus in this case was longer than in the actual 

experiment, because acquiring the shape of the waveform required a higher recording frequency. 

Since this frequency was limited, the program took 20 readings as fast as possible which resulted 

in the longer stimulus duration. However, this was not an issue, because the front part of the 

waveform was of primary interest in understanding how long it takes the LED to reach its full 

output. 

 

Figure 3-35. Voltage waveform for the glare source positioned at 10° and set to 20 mA  
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Figure 3-36. Software to test the consistency of voltage, current, and illuminance readings  
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Figure 3-37. Software to test the consistency of voltage and current readings  

 

Figure 3-38. Software to test the consistency of illuminance readings  
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Based on the voltage and current waveforms (Figure 3-35, Figure 3-39), the timing for 

each device was determined that guaranteed stable readings. Figure 3-40 shows how fast the 

illuminance meter responded to a command to record illuminance during the time when the light 

source was on. Due to the limitations of the devices’ response-latencies, the time of the “on” and 

“off” periods had to be increased from 1 second to 1.2 seconds to enable the consistent collection 

of all desired measurements.  

The total duration of one flash was 1200 ms; a half time step was 600 ms. No readings 

were taken during the first half time step, because the LED was not at its full output yet. At 

approximately 700 ms, the command was sent to power supply one (PS1) to acquire the voltage, 

current, and power readings of the glare source at position 0°. The same command was sent to 

power supply two (PS2) at approximately 800 ms, and, at the same time, the readings from PS1 

were recorded. The readings from PS2 were recorded at approximately 900 ms, and at the same 

time, a command to the illuminance meter was sent.  At approximately 1000 ms the illuminance 

of the flash was recorded. Finally, the light source was switched off at 1200 ms which concluded 

one “on” increment (one flash). 
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Figure 3-39. Current waveform for the glare source positioned at 10° and set to 20  mA 

 

Figure 3-40. Illuminance meter response to a command to record the illuminance when the 

glare source positioned at 10° was set to 20 mA 
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Despite the fact that illuminances were collected during the stable part of the flash (at 

approximately 1000 ms in Figure 3-40), the illuminance inconsistency persisted. The problem 

was related to the measuring mode of the meter. Konica Minolta’s illuminance meter (T-10) has 

five options related to the measuring ranges (Illuminance meter manual). By default, the 

measuring range is automatically switched from one range to another during the measurements. 

The code that determines the range on the meter was unknown. However, the assumption was 

that when one measures illuminance in the auto measuring range, the meter requires some time 

to determine the ‘correct’ range and display the value. The meter consequently checks whether 

the value fits into a measuring range until it finds the appropriate one. Searching for the 

appropriate range took longer than the flash duration. When a constant stimulus was presented, 

the illuminances measured in sequence resulted in random numbers (Figure 3-41). The 

maximum illuminance at the eyes did not exceed 299.9 lx in this experiment. Therefore, instead 

of using the auto measuring range option, the meter was set to the range #2 (0.0-299.9 lx), which 

solved the inconsistency issue. Figure 3-42 shows the illuminance readings for a constant 

stimulus recorded in sequence when the measuring range #2 was set on the meter (as opposed to 

the auto measuring range in Figure 3-41). 

 



www.manaraa.com

92 
 

 

Figure 3-41. Illuminance readings of a constant stimulus recorded in sequence using the 

meter’s automatic measuring range  

 

Figure 3-42. Illuminance readings of a constant stimulus recorded in sequence using the 

meter’s measuring range #2 (0.0-299.9 lx)  
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3.7 Calibration and Measurements 

This section describes calibration measurements of the apparatus completed before the 

experiment started and a set of measurements collected four times over the course of this study 

(after 18, 34, 44, and 56 subjects) to ensure reliable performance of the apparatus over time and 

the quality of the acquired data. In addition, these measurements enabled discomfort glare 

metrics calculations. For example, for Bullough’s et al. metric (2008), it was necessary to 

measure the light source illuminance, ambient illuminance, and surround illuminance (section 

2.3.4).  

The following measurements were recorded: 

 Background luminance with a luminance meter at 11 points at all background luminance 

levels; 

 HDRIs of the background luminance at all background luminance levels; 

 Luminance of both glare sources at all luminance levels; 

 Spill light caused by the glare source at its highest output and largest size used in this 

study - the increase in background luminance when compared to the state without the 

glare source; 

 Illuminances at the left and the right eye at all glare source luminance levels; 

 Illuminances at the right bar measured for all 36 conditions. These measurements served 

as the quality check – the baseline for the illuminances measured for each subject during 

the experiment; 

 Illuminance at the eyes (center) caused by the background source reflected off of the 

background (ambient illuminance); 

 Total illuminance at the eyes (at the center) for 36 conditions;  
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 Only the direct component of illuminance from each glare source (0˚ and 10˚ position) at 

the eyes for 36 conditions;  

 Illuminance at the eyes from the glare sources after reflection from surrounding surfaces 

for 36 conditions (surround illuminance); the direct component was blocked.  

 

Each of the glare sources consisted of seven components (see section 3.6.1.1), two of 

which were calibrated – the motorized aperture and the LED chip.  

The motorized aperture that changed the solid angle of the glare source used its own unit 

system (e.g. the smaller aperture had the range of 0 - 170,000 control steps), which was mapped 

to mm using a caliper (Appendix F). Since two apertures were not the same model, setting the 

apertures to the same solid angle required different numbers in their unit system. For example, 

for the aperture located at 0˚, 14,000 mapped to 3.6 mm (a solid angle of 10-5sr for a distance of 

1 meter), but for the aperture at 10˚, the same solid angle was achieved at a setting of 18,000. 

The currents on LEDs were mapped to luminances (Appendix F). Since the LED chips 

did not exhibit the exact same characteristics, different currents were applied to the LEDs to 

create the same luminance.  

To enable consistent measurements of the background luminance with the luminance 

meter over time, the investigator had to mark a set of points on the background. Eleven points 

were arranged in three circles around the fixation point (5˚, 10˚, and 20°) (Figure 3-43). 

According to Boyce (2003), if the subject has one point of fixation, then the average luminance 

within approximately 20º of the fixation point is a reasonable estimate of the adaptation 

luminance. The background luminance was calculated as the average across these eleven points. 
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The investigator initially used pins to mark the points of interest. Once the marks were 

checked with the laser level (Figure 3-44), the points of interest were marked with a silver 

permanent marker. These marks were visible enough to acquire consistent readings over time 

(Figure 3-45). In addition to eleven points measured with the luminance meter, HDRIs were 

taken to acquire background luminances of the entire field (Appendix A). For a detailed 

description regarding the HDRI measurements method, refer to the paper by Tyukhova and 

Waters (2014). 

     

Figure 3-43. Schematic representation of eleven points of interest to test the uniformity of 

the background luminance and consistency over time (left) and actual eleven points in the 

apparatus shown together with laser level marks (right) 
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Figure 3-44. Checking the markings of eleven points with the laser level 

 

Figure 3-45. Eleven points of interest marked with a silver permanent marker (view from 

the subject’s position) 
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Ensuring consistent measurements of the glare source and background luminances 

between the experiments with subjects required the same positioning of the luminance meter for 

every set of measurements. A tripod was essential for this purpose. Since the measurements were 

scheduled between the tests with subjects, the tripod was relocated a number of times. To ensure 

the same tripod position across the measurements, caster cups were attached to the floor (Figure 

3-46). In addition, to ensure a consistent distance from the floor to the luminance meter, marks 

were added to the tripod legs. The length of the tripod legs was left unchanged throughout the 

experiment.  

 

Figure 3-46. Caster cups attached to the floor allowed consistent positioning of the 

luminance meter on the tripod over time 
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Ideally, the focal-plane of the luminance meter would be positioned exactly where the 

subject’s eyes were located – at the center of the sphere. However, this was not possible due to 

limited physical space. The dimensions of the tripod and construction of the bar across the sphere 

did not allow the placement of the luminance meter at the position of the subject’s eyes (one 

meter distance from the glare sources). Therefore, the location of the luminance meter’s focal-

plane was behind the eye level (Figure 3-47). This difference between the desired one meter 

distance and the actual distance from the glare source to the focal-plane of the luminance meter 

was accounted for with the focus distance setting (1.17 m) on the luminance meter.  

 

Figure 3-47.  Position of the luminance meter during the measurements of the glare source 

at 0° between the tests with the subjects 

Another issue to consider was the need for the variable height of the tripod’s column (hc 

in Figure 3-48, Figure 3-49) for the measurements of the two light sources. Since the luminance 

meter was not positioned at the center of the sphere, any tilting of the tripod shifted the meter’s 

acceptance area above the actual position of the top light source (at 10˚) by an amount shown as 

“A” in Figure 3-48. Therefore, to measure the glare source at 10˚, the tripod’s column was 
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positioned at the lowest setting (Figure 3-49), and for the glare source at 0˚, the column was 

extended up to the silver mark made during the calibration stage (Figure 3-47).   

 

Figure 3-48. Acceptance area of the luminance meter is shifted up when the tripod is tilted 

 

Figure 3-49. Position of the luminance meter during the measurements of the glare source 

at 10° between the tests with the subjects 

During the measurements the experimenter verified that the eye level marks on the 

chinrest, the glare source, and the luminance meter were aligned in one plane (Figure 3-50 
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through Figure 3-52). Views of a background point and a glare source through the luminance 

meter are shown in Figure 3-53. 

 

Figure 3-50. Positioning of the luminance meter for the measurements taken between the 

subjects 

 

Figure 3-51. Measurements with the luminance meter 
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Figure 3-52. Luminance measurements from the side 

    

Figure 3-53. Views through the luminance meter 

Left - Aiming at a background point marked with a silver permanent marker  

Right - Aiming at a glare source 

 



www.manaraa.com

102 
 

Spill light from the glare sources was a concern in this study, because it could increase 

the luminance of the background by an unknown amount. Therefore, it was measured. According 

to the luminance meter manual, light sources outside of the luminance meter’s acceptance area 

influence measurements only slightly. However, practice showed that in the case of dark 

environments the background luminance measurements were considerably influenced by the 

glare source (instead of 0.03 cd/m2, the meter measured an average of 1.82 cd/m2 across eleven 

points), instead of the actual spill light. For this reason, a special “occluder” was built (Figure 

3-54). It was mounted in the center between the glare source and the luminance meter on an 

additional bar of the eye tracking device supporting structure. The occluder was used to block the 

direct view of the glare source; this allowed accurate measurements of the background 

luminance with and without spill light (Figure 3-55) (Appendix B).  

  

Figure 3-54. Occluder blocks the direct view of the glare source 
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Figure 3-55. Occluder during the spill light measurements 

The illuminance measurements were taken to check the consistency of the apparatus 

performance over time. To perform the illuminance measurements at the subject’s eyes location 

(between the experiments), custom bars were constructed and placed on the right and left hand 

side of the chinrest for the whole duration of the experiment (Figure 3-56). The purpose of these 

two bars was to support a third temporarily installed bar that held the illuminance meter remote 

head between the tests. The location of this third bar matched the mark on the chinrest that 

corresponded to the eye level (in line with the 0° source) (Figure 3-57, Figure 3-58).  

The distance between the eyes was measured for three people in a pilot test (about 60.3 

mm between the centers of the pupils), and it was assumed to be an acceptable approximation for 

the test subjects. During the calibration stage, silver marks were added to the bar that matched 

the eye level at approximate locations of the left eye, the right eye, and at the center. To ensure 

equal illuminance at both eyes, illuminances were measured at the left and right marks on the bar 

(Figure 3-59).  
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During the actual subjects testing, the illuminance meter head was placed on the bar to 

the right of the chinrest. Four readings were taken during each condition for each subject (one in 

the no-glare state and three during each of the three glare source flashes). The expected 

illuminances were measured ahead of time, so that a comparison between the baseline and the 

actual readings could be made. Acceptable illuminance ranges were verified with an automated 

Excel spreadsheet (a tolerance of +/-10% was allowed) (Appendix G).  

     

Figure 3-56. Illuminance meter remote head installed on the bar at the eye level 
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Figure 3-57. Illuminance meter installed on the bar at the eye level (close-up) 

 

Figure 3-58. Illuminance meter installed on the bar at the eye level (side close-up) 
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   с  

Figure 3-59. Illuminance meter installed at the left, center, and right marks 

Additional illuminance measurements enabled the calculations of discomfort glare by 

Bullough’s et al. (2008) metric, which required the measurements of very specific illuminance 

components – namely, ambient, surround, and direct.  

Ambient illuminance in Bullough’s experiment was measured by switching the light 

source under consideration off, while measuring the illuminance from other sources in the 

environment. In this study, it was the reflected component of the illuminance from the 

background source. Since three levels of background luminance were studied in this research 

(0.03, 0.3, and 1 cd/m2), three illuminance readings with both glare sources switched off were 

measured at the location of the subjects’ eyes (at the center).  

The second illuminance was the surround illuminance. In Bullough and colleagues’ 

paper, this is the ambient and the direct components subtracted from the total illuminance at the 

center, which essentially is the reflected illuminance from the glare source. In order to measure 

this component, the occluder from the spill light measurements was used (Figure 3-54). The 

occluder assured that the direct component of the illuminance from the glare source was blocked; 

the meter sensor was in the shadow of the occluder. The background source was off.  

Finally, the third component was the direct component of the illuminance from the glare 

source.  A special tube with black baffles placed inside was mounted on a tripod to collect this 

measurement (Figure 3-60). The main challenge was to align the tube with the glare source and 
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the meter (Figure 3-61). Improper alignment resulted in incorrect illuminance readings due to the 

shadow on the meter. Therefore, the following method was used to measure this direct 

illuminance accurately.  

A tripod holding the tube was placed in front of the illuminance meter. After sliding the 

meter to the side of the bar, the glare source was visually centered through the tube from the 

illuminance meter position (a silver mark on the bar) (Figure 3-61, Figure 3-62). Then the meter 

was moved back to the center, and velvet (ρ = 0.006) was placed over the meter and the tube to 

absorb unwanted light (Figure 3-63). The experimenter carefully lifted the velvet to verify that 

when the glare source was on, no part of the illuminance meter was in the shadow (Figure 3-64).  

The aiming of the glare sources was critical in this study. Inappropriate aiming could 

result in higher illuminance at one eye than the other. Therefore, it was important to verify that 

the glare sources were aimed properly. The easiest way to do this was to use a luminance 

mapping camera (Figure 3-65). 

Multiple measurements of the apparatus served as a quality check, which verified that the 

apparatus did not change over time and guaranteed that all subjects were responding to the same 

stimuli.  
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Figure 3-60. Tube for measuring the direct illuminance component from the glare source 

 

Figure 3-61. Visual alignment of the glare source, tube, and the illuminance meter (focused 

on the source) 
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Figure 3-62. Visual alignment of the glare source, tube, and the illuminance meter (focused 

on the bar) 

 

Figure 3-63. Black velvet placed over the tube and the meter  
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Figure 3-64. Illuminance meter is in “full” view of the glare source (no shadows) 

 

Figure 3-65. Luminance mapping camera (at the eye level) used for checking the aiming of 

the glare sources 
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3.8 Apparatus Performance over Time  

A decrease in the glare source luminance (for the source located at 0˚ and set to 12 mA) 

was noticed during the course of the experiment. These settings of the glare source were used in 

the first six lighting conditions (Appendix C). The stimuli were measured before the start of the 

experiment, and after subjects 18, 34, 44, and 56. Before the first subject was tested on April 11, 

2015, the average luminance of the source was 21,820 cd/m2. After the last subject was tested on 

May 16, 2015, the glare source luminance was 18,890 cd/m2, a difference of 13.4 %. 

If the decrease in luminance over time influenced subjects’ judgements (i.e. was 

associated with lower glare ratings) then a significant negative correlation between the subjective 

responses and time would be expected. Correlations for all six conditions were calculated (Table 

3-6), and none of the coefficients was significant. However, the correlation coefficient for 

condition 5 would be considered by some to be marginally significant.  

Table 3-6. Correlation coefficients between the subjective responses and time for six 

conditions 

Lighting condition Correlation P value for H0 

1 0.237 0.109 
2 0.177 0.234 
3 0.13893 0.352 
4 -0.205 0.166 
5 -0.272 0.064 
6 -0.235 0.110 

 One of the quality measures used in this apparatus for ensuring consistency was the 

illuminance meter installed to the right of the subjects (Figure 3-14). The subjective responses 

were plotted over time (which is equivalent to subjects’ IDs) on the same graph as the 

illuminances that were recorded at the time of each subject’s testing (Figure 3-66). The decrease 

of illuminance over time was within 12% (minimum 2.2 lx, maximum 2.5 lx). The decrease in 

subjective responses over time was not obvious, however, condition 5 was investigated further.  
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Figure 3-66. Subjective responses and the average illuminances for condition 5 over time 

If the decrease in luminance affected the subjective responses, then one would expect that 

the apparatus also affected the pupil data. However, there was no relationship between the 

relative pupil size and the time in condition 5 (F = 0.05, p = 0.823).   

In addition, if the apparatus influenced the subjective responses, then the sign of the 

correlations in all six conditions (Table 3-6) is expected to be negative. This would mean that the 

decrease in luminance would most likely cause subjective ratings to be lower. However, the 

correlations in three of the six conditions were positive.  

Overall, then, there was little evidence that this minor problem with the apparatus 

influenced the conclusions.  
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3.9 EMG Integration into the Controls Software 

The Focus EMG machine is typically used in nerve conduction studies in medicine to 

help diagnose problems such as pain in the lower back (the TeleEMG website) (Figure 3-67). 

Usually a nerve or a muscle is stimulated and the response is recorded via electrodes. Based on 

previous studies (see section 2.4.2), it was hypothesized that by stimulating the subjects with a 

glare source, muscles around the eyes would display a noticeable response.  

 

Figure 3-67. Focus EMG machine 

The EMG device was connected to the laptop via USB. The accompanying software 

allows only manual recording of the EMG data by pressing “Start EMG” and then the “Store” 

button on the device. The shape of the EMG signal was displayed on the computer screen 

(Figure 3-68). The software running on the computer calculated the Muscle Activation (MAC) 

Index, which is the sum of all absolute voltages sampled at 20 KHz acquired over one second 

(20,000 points) (equation (3-2)). In this research, the intention was to examine the MAC indices 
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during the glare source presentation and to compare them to the baseline – the state without 

glare. Increased muscle activity was expected in the glare state.  
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(3-2) 

 

 

Figure 3-68. Focus EMG software  

The computation of the MAC index requires three steps. First, the EMG device needs to 

be activated by pushing the “Play” button, which starts displaying the signal on the screen in real 

time (Figure 3-68). Second, pressing the “Start” button starts recording the data, and, lastly, 

pressing the “Stop” button stops recording, after which the software computes the MAC index. 

In order to collect reliable data, one needs to verify that the MAC indices accurately map to the 

actual events such as the presence or absence of glare. However, since in this research there were 

multiple events that happened during each lighting condition (such as three flashes) (Figure 

3-34), it would not be possible to manually and accurately collect and store the MAC indices. 

Therefore, it was essential to integrate the EMG data acquisition into the controls software, and 
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record the raw EMG signal over a desired period of time. Subsequently, based on the parts of the 

signal that represent the muscles activity during the glare- and no-glare states, the MAC indices 

can be calculated and compared. Without such integration and synchronization of the EMG data 

with the other data signals, manual recording of the MAC index would be meaningless or require 

extensive manual alignment of signals. 

The integration of the EMG data collection into the controls software was a challenge, 

because no technical information or additional documentation about the EMG device was 

available. After some experimentation, a driver was identified in the existing EMG software as 

the module that communicates directly with the EMG machine via a USB port. To enable 

automated data collection on a computer, a custom dynamically linked library (DLL) was written 

in C Sharp that referenced the existing driver in the software of the EMG machine. The driver 

supported essential functions such as turning the EMG machine on/off and starting/stopping the 

EMG data collection.  

After establishing communication with the device, a small pilot test with human subjects 

allowed the recording of facial movements such as squinting of eyes, which could be identified 

in the EMG data. The data could be recorded for various durations. The electrodes impedance 

test, which checked if the electrodes were attached to the face properly, was also working. Based 

on the settings used in the provided software, the following settings were used for the final 

recording: signal Input Range 20 mV, Low Frequency (high pass filter) 20 Hz, High Frequency 

(low pass filter): 10,000.00 Hz, Notch Filter On, Notch filter type Recursive, High Harmonics 

filter Off, Sampling rate 20 KHz. Once the DLL proved to be working reasonably well, it was 

integrated into the controls software. Due to time constraints, a proper pilot test with all 36 

conditions running one after another was not completed.  
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3.10 Eye Tracking (Pupil) Data Processing Software 

Special software for pupil data processing was written. Each pupil data file consisted of 

720 data points, which is equivalent to 12 seconds of recording (at 60 Hz sampling rate), over all 

trials (for an example of a partial pupil data file see Appendix H). The initial diameter (dinitial) 

was the condition of the pupil before any glare source was shown to the subject (Figure 3-69). It 

was influenced by one of the three background luminances used in the study (0.03, 0.3, and 1 

cd/m2). Steep drops in the pupil diameter represented the appearance of the flashes in the 

subject’s field of view (after accounting for the pupil’s latency). Three minima (dmin) represented 

the full output condition of the light source (flash). Since the pupil data were recorded manually 

by pressing the button, a certain amount of human error was present at the beginning of each 

condition.  

Custom software for pupil data processing was written in Matlab (Figure 3-70). Once the 

experimenter chose the data of a subject and pressed the “Load from the list” button, the 

software loaded all 36 conditions for this subject, with one condition displayed at a time. The 

default pupil scale was set to the range of 1.5 to 8.5 mm, which covered the typical range of 

pupil diameters for young people (2-8 mm (Boyce 2014)). However, if necessary, the scale could 

be changed. Anything that fell outside of the 1.5-8.5 mm range was cut off and considered 

“noise” (e.g. a blink or glasses reflections).  The subject’s ID number, condition number, and the 

run number (the order of the condition) were displayed at the top of the interface during the data 

processing. 
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  Figure 3-69. Timing of the pupil data file during one condition 

The experimenter had to add seven marks to the graph to indicate the initial diameter 

(Figure 3-70), the start of each of the three flashes with an unknown error for pupil’s latency 

(Figure 3-71), and the three minima of the pupil diameter for each subject and each condition. 

The initial diameter and the marks of the three minima of the pupil diameter were used to 

compute the relative pupil size that was analyzed in this research (section 4.2). The experimenter 

selected points that represented the initial diameter with a rectangular box (excluding the blinks) 

before the start of the first flash, and the software calculated the average pupil diameter in the 

initial state (Figure 3-70). The marks at the start of the three flashes were added in an attempt to 

align the pupil and EMG data (Appendix W).  

 



www.manaraa.com

118 
 

 

Figure 3-70.  Eye tracking (pupil) data processing software (in Matlab) 

 

Figure 3-71. Example of the pupil file with the marks for one condition 
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3.11 Subjects  

A total of 73 subjects signed up for the experiment of which a total of 56 subjects actually 

participated in the experiment. Data from only 47 subjects were analyzed.  

Seventeen of 73 subjects who signed up did not participate in the main experiment: 

eleven subjects did not pass the vision test; two were not comfortable doing the test after reading 

the consent form (older than 75); one subject was under age (18); and three did not show up or 

cancelled the session.   

The subjects were recruited using several methods: emails sent to Musco Employees by 

an HR manager, emails sent to students of William Penn University by the Vice President for 

Academic Affairs and Dean of Faculty, and through the direct relationships of Musco employees 

with members of the Oskaloosa community. Subjects signed up by visiting the website that was 

created for this study (www.lightingstudy.com) or emailing/calling the experimenter directly.  

On the webpage subjects had to provide general information (Appendix I). The study was 

voluntary; the subjects were not paid for their participation. Due to several factors, only 47 

subjects were included in the data analysis.  

3.11.1 Data Exclusion 

The pupil data of nine of the 56 subjects were excluded from the analysis. Two subjects 

did not have any pupil data, three had poor quality data, and four had a missing condition and 

were excluded as well. These nine subjects are discussed in the paragraphs below. 

The experimenter was observing the pupil data recording through the “EYE MONITOR” 

window in the eye tracking software (Figure 3-72). When the pupil was tracked properly, a 

crosshair in the middle and a white overlay fully covering the pupil were moving together with 

the pupil (Figure 3-73). 
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Figure 3-72. ISCAN Raw Eye Movement Data Acquisition Software for pupil size 

recording 

 

Figure 3-73. Example of good eye tracking (eye monitor enlarged)  

Recording of pupil data for two subjects (ID 1 and 43) failed altogether. Any adjustments 

of the eye tracking device did not allow it to track the pupil correctly. Subject ID1 had thick 

eyeliner and heavy dark makeup, so that the eye tracking device confused the makeup with the 
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pupil, and could not track it (Figure 3-74, left). Subject ID43 wore glasses that did not allow a 

proper tracking of the pupil presumably because of a special coating on the glasses (Figure 3-74, 

right). Following the recommendations of the eye tracking manual, the experimenter tried to 

change the angle between the observer and the camera of the device, but this did not result in any 

considerable improvement. Due to the apparatus setup, the eye tracking device could not be 

moved closer to the subject. Therefore, no data files were acquired for both subjects ID1 and 43.  

    

Figure 3-74. Low quality eye tracking  

Left – Subject with heavy dark makeup (ID 1) 

Right – Glasses with a special coating (ID 43) 

Three more subjects (ID3, 24, and 52) were not included in the analysis due to the poor 

quality of the eye tracking data (for a description of the eye tracking graph see section 3.10). The 

eyes of subject ID3 were halfway open during the glare measurements (Figure 3-75, Figure 

3-76). Subject ID24 was excessively blinking; eye tracking confused the pupil with the makeup 

(Figure 3-77). Finally, subject ID52 had many reflections due to tinted glasses (Figure 3-78, 

Figure 3-79). Therefore, data of these three subjects were excluded. Unlike during a typical blink 

with few vertical lines in the graph (e.g. Figure 3-69), in a problematic eye tracking condition 

there are multiple vertical lines that indicate that the tracking crosshair was “jumping” from the 

pupil to other dark objects in the EYE MONITOR window (for example, see Figure 3-75).       
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Figure 3-75. Poor quality of eye tracking data due to the halfway open eyes (Subject ID3, 

condition 15)  

 

Figure 3-76. Poor quality of eye tracking data due to the halfway open eyes (Subject ID3, 

condition 28) 
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Figure 3-77. Poor quality of eye tracking data due to excessive blinking (Subject ID24, 

condition 29)  

       

Figure 3-78. Poor quality of eye tracking data due to tinted glasses (Subject ID52, condition 

24) 
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Figure 3-79. Poor quality eye tracking data (tinted glasses) (ID 52) 

Four subjects (ID 12, 20, 40, and 45) had a missing condition. One subject had missing 

data in one condition due to a technical difficulty during the recording; three other subjects had 

missing data in one condition, because the noise in the recorded data (e.g. reflections from 

glasses) prevented the experimenter from identifying the necessary parts of the pupil file such as 

the minimum diameter. Initial eye tracking adjustments provided good tracking results. 

However, once the subjects slightly changed their position on the chinrest between the trials, it 

caused noise that prevented recording useful data in that condition. Therefore, these subjects 

were excluded from the entire analysis as well.  

Forty-seven of the 56 subjects had complete datasets and were used both in the subjective 

and the pupil data repeated-measures ANOVA analysis. 

There were some conditions for approximately five other subjects that also had 

problematic data. For example, one subject’s data (ID38), which was still included in the 

analysis, exhibited “moderate” noise due to glasses reflections (Figure 3-80, Figure 3-81). 

However, to the best ability of the experimenter, the data were still marked.  
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Figure 3-80. Problematic eye tracking file that was marked and used in the analysis 

(subject ID38, condition 17) 

 

Figure 3-81. Problematic eye tracking file that was marked and used in the analysis 

(subject ID38, condition 22) 
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3.11.2 Description of the Included Participants 

A total of 47 subjects were included in the analysis. All demographics information was 

self-reported via the General Information Survey form (Appendix M). The youngest subject was 

20 years old and the oldest 76. The mean age was 39.3 years (Figure 3-82). Sixteen participants 

were female and thirty-one male. Forty-five subjects were Caucasian, one Hispanic/Latin 

American, and one Asian/Caucasian. The native language was English for 45 subjects, Spanish 

for one, and German for another one. Twenty-six subjects reside in Oskaloosa, IA, others in 

neighboring communities in IA, and one in Montezuma, MO. 

The subjects were allowed to participate in the experiment if they had normal vision or 

normal vision with correction (contacts or glasses). Thirteen participants wore glasses. Thirteen 

wore contact lenses. Twenty-one subjects wore neither glasses nor contact lenses, but four of 

them wear reading glasses sometimes. At least two subjects mentioned that they had LASIK 

surgery done, and some reported cataract surgery. 

The vision of a total of 67 subjects was checked. Eleven subjects did not pass the vision 

test. Forty-two participants passed the vision test on the first attempt (they scored in the expected 

ranges in the Keystone vision test, or were off by one, see Appendix K). If the participants failed 

in only a single vision target or were close to the passing zone on the related targets, the 

participants were given a second attempt at the end of their test. Ten people scored in the 

expected range after the second attempt. Finally, four subjects were “borderline” subjects (e.g. 

still 1 off from the passing condition on the second attempt), but they were also included in the 

experiment. A total of 56 subjects participated in the experiment; data from only 47 subjects 

were analyzed. 
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Figure 3-82. Number of subjects in each age group (a total of 47 subjects) 

Sixteen subjects had blue eyes, 13 brown, 13 hazel, 4 green, and 1 blue/green. On the 

“sensitivity to light” question (on a scale of 1 (not at all) through 5 (very sensitive)), the majority 

of the subjects (nineteen) reported 3, sixteen reported 2, five subjects reported “not at all 

sensitive”, four subjects reported 4, two subjects reported “very sensitive”, and one reported 

between 3 and 4. Forty-three subjects had mostly indoor professions, two outdoor, and two more 

both indoor and outdoor equally. Thirty-seven participants were Musco employees (two of which 

were also students), six were students, and six were recruited from the Oskaloosa community. 

Thirty-two participants had not participated in a lighting research experiment before, fifteen had. 

Thirty-six participants had caffeine on the day of the test; eleven did not. Twenty-two 

participants did the experiment in the morning sessions, twenty-five in the afternoon.  
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3.12 Procedure 

Before the main study a pilot testing was conducted on a small sample to identify 

potential problems, test stimulus materials, verify direction of the results, and to fine-tune the 

methodology. Due to time constraints the EMG was not tested during the pilot study. Both the 

pilot study and the main experiment were conducted at Musco Sports Lighting in Oskaloosa, IA.  

Before the subjects arrived at the scheduled time, the experimenter had completed several 

preparation steps. Through the glare software, the experimenter established communication links 

between all devices and the controls software (Figure 3-28), loaded the parameters file 

(Appendix E), the conditions file (refer to Table 4-2 for 36 conditions), and the text file to which 

the data collected were stored. Additionally, the order of the lighting conditions presented to the 

subjects was randomized. 

The eye tracking software (REMOTE ETL-100) was loaded on a separate laptop. During 

the very first time, the device was calibrated with an artificial pupil - a hole in a metal plate that 

acted as a sink to the infrared light illuminating it. Then a conversion from pixels to mm was 

applied and stored in the settings file in the software.  

Each subject reported to the testing lab at Musco Sports Lighting in Oskaloosa, IA and 

was instructed to read and sign an Adult Informed Consent (Appendix J). A copy of the signed 

form was emailed to the subject (several subjects did not want the copy). After signing the form 

and agreeing to participate in the experiment, the subjects’ vision was tested with the Keystone 

Visual Skills Screening Test (Appendix K, Appendix L). This test served to demonstrate the loss 

of specific visual skills, if they exist (see Keystone Visual skills test set instruction manual). The 

intent of this test was to verify that each subject’s vision resided in the normal range (section 

3.11.2).  
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Subjects that passed the vision test and agreed to participate in the study, filled out the 

General Information Survey (Appendix M). After a short introduction to the experiment 

(Appendix P), the subjects were seated next to the sphere. The experimenter explained the 

apparatus, the experimental procedures, and answered any questions (Appendix P).  

After these instructions, the subjects were seated inside of the experimental sphere. The 

experimenter verified that the eye level matched the mark on the immovable part of the chinrest 

and adjusted the movable part of the chinrest, if necessary. Once the eye level matched the mark 

on the chinrest, the subject adjusted the chair to a comfortable position. The experimenter 

adjusted the eye tracking device to enable the proper tracking of the pupil and activated the 

tracking. After this initial set up, the subjective scale was explained to the participant.  

(Appendix N, Appendix O).  

During the next step, the experimenter cleaned certain areas on the subject’s face with 

sterile alcohol swabs (ReliOn), applied electrode gel (Spectra 360) to the EMG electrodes 

(silver/silver chloride electrodes (Ambu Neuroline 715)), and attached them to the subject’s face. 

Two electrodes were placed under each eye, and one on the forehead (Figure 3-32). Channel 1 of 

the EMG device collected the input from the right eye; Channel 2 from the left eye. Adhesive 

tape was placed over the electrodes to avoid accidental removal during the experiment. After the 

electrodes were placed on the subject’s face, the electrodes were connected to the Focus EMG 

Machine, which was then attached to the back of the subject’s chair (Figure 3-27). 

Before starting the main experiment, subjects were shown two stimuli on opposite ends of 

the discomfort glare sensation spectrum (“no discomfort glare” and “intolerable”) to demonstrate 

the range of possible conditions in this study. This was done to “calibrate” the subjects’ 

responses. As Lulla and Bennett showed, the range of stimuli used in a psychophysical 
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experiment can influence subjects’ responses (1981). Therefore, Tiller and Rea recommended 

that pre-experimental standards should be used to define the meaning of the upper and lower 

limits of a rating scale to observers, anchoring the response range to the stimulus range (1992). 

After the setup, the subject completed three practice trials to get familiar and comfortable with 

the procedure. Practice trials for the observers were employed to reduce the response variability 

associated with learning an unfamiliar task.   

Finally, after the practice trials the main experiment started. The entire introduction up to 

the start of the main experiment took approximately 25-30 minutes. The experimenter closed the 

curtain (at the entrance to the sphere), so no light from the outside could enter the sphere. Each 

subject saw each of the 36 lighting conditions in a randomized order with every condition lasting 

approximately 60 seconds. 

Before the start of each condition, the software checked the impedance of the electrodes. 

If it detected a problem, a pop-up window was shown to the experimenter indicating that the 

electrodes had to be re-attached.  

At the beginning of each condition (refer to Figure 3-34 for the timeline), the background 

luminance was set to one of the three levels (0.03; 0.3; 1 cd/m2) according to the experimental 

condition parameters. The adaptation time lasted approximately 49.2 seconds. During the first 

31.2 seconds, when no fixation point was on, the subjects were allowed to move their eyes 

without moving their heads on the chinrest. This was an opportunity to relax their eyes, and 

increase the subjects’ attention. At 31.2 seconds, the fixation point was switched on; the subjects 

had to fixate the gaze on the fixation point at all times.  

At approximately 46.8 seconds, the experimenter pressed the “Start Record” button in the 

eye tracking software on the second laptop. At approximately the same time, the EMG recording 
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started automatically and no additional input was needed from the experimenter. The eye 

tracking recording automatically switched itself off after 12 seconds as did the EMG.  

At 49.2 seconds, the flashing sequence started either at the 0˚ or at 10˚ position, 

depending on the condition. After all three flashes were shown, the subject verbally rated 

discomfort glare on a scale of 0 through 6 (Appendix O), which the experimenter entered into the 

glare software.  

Through the camera of the eye tracking device, the experimenter observed what the 

subjects were looking at. It was critical to verify that subjects looked at the fixation point when 

necessary and were not glancing at the upper source when they had to look straight ahead. 

Besides recording the pupil diameter, the eye tracking device proved to be a very valuable 

quality check – for example, to detect sleepiness of some participants, which was noted in the 

subject’s file.  

After all 36 lighting conditions were completed, each subject was asked to answer a one-

question survey (Appendix Q), which concluded the experiment.  

 

  

 

 

 

 

 



www.manaraa.com

132 
 

CHAPTER 4 – RESULTS 

The task of data analysis is to build a story of what the data have to tell. 
- Judd et al. 2009  

The experiment generated three different bodies of data that cover different aspects of the 

human reaction to discomfort glare. The first one is the subjective assessment of discomfort glare 

reported by the subjects (the rating scale data). This is simply a rating for each of the 36 lighting 

conditions (or scenarios) by each of the 47 subjects included in the data analysis (the full dataset 

is shown in Appendix R and an example in Table 4-1).  

Table 4-1. Results of the rating scale experiment for Subject ID32 

Scenario 
number 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Subjective 
response 1 2 2 4 3 4 3 1 2 4 3 3 4 3 2 5 6 6 
Scenario 
number 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

Subjective 
response 2 3 3 5 5 5 5 5 5 6 6 6 3 4 3 5 5 5 

                  

The second body of data is the pupil diameter data that were collected from the remote 

eye tracking device aimed at the left eye of the subject. In each condition the pupil diameter was 

recorded for 12 seconds, resulting in 720 individual data points (60 points per second) (Figure 

4-1) (the full dataset of the relative pupil size is shown in Appendix U). 
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Figure 4-1. Example of pupil diameter recorded for 12 seconds for one subject and one 

condition (subject ID32, condition 15).  

 
Finally, the third body of data is the set of EMG readings recorded through electrodes 

placed on the subjects’ faces in the area of orbicularis oculi (Figure 3-32) – the muscle 

responsible for closing the eyes. The EMG readings were recorded for 12 seconds in each 

condition for each subject.  

4.1 Rating Scale Analysis   

A repeated-measures Analysis of Variance (ANOVA) was used for the analysis of the 

rating scale data. Prior to the discussion of the results acquired through ANOVA, one can gain a 

useful insight about the collected data by simply looking at the descriptive statistics. The 

subjective responses to discomfort glare given by 47 of the 56 subjects, who participated in the 

experiment, were included in the rating scale analysis (see section 3.11.1 on the data exclusion of 

9 subjects). The responses were averaged across 47 subjects to determine a mean rating for each 
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of the 36 lighting conditions (Table 4-2). The values were plotted in Figure 4-2 with 95% 

confidence intervals shown as errors bars. 

Table 4-2. Thirty-six experimental lighting conditions 

Number of 
condition 
(scenario) 

Luminance, 
cd/m2 

 

Position, degrees Background 
luminance, cd/m2 

Solid angle, sr 
 

1 20,000 0 0.03 10-5 

2 20,000 0 0.3 10-5 
3 20,000 0 1 10-5 
4 20,000 0 0.03 10-4 
5 20,000 0 0.3 10-4 
6 20,000 0 1 10-4 
7 20,000 10 0.03 10-5 
8 20,000 10 0.3 10-5 

9 (min) 20,000 10 1 10-5 
10 20,000 10 0.03 10-4 
11 20,000 10 0.3 10-4 
12 20,000 10 1 10-4 
     

13 205,000 0 0.03 10-5 

14 205,000 0 0.3 10-5 
15 205,000 0 1 10-5 
16 205,000 0 0.03 10-4 
17 205,000 0 0.3 10-4 
18 205,000 0 1 10-4 
19 205,000 10 0.03 10-5 
20 205,000 10 0.3 10-5 
21 205,000 10 1 10-5 
22 205,000 10 0.03 10-4 
23 205,000 10 0.3 10-4 
24 205,000 10 1 10-4 
     

25 750,000 0 0.03 10-5 

26 750,000 0 0.3 10-5 
27 750,000 0 1 10-5 

28 (max) 750,000 0 0.03 10-4 
29 750,000 0 0.3 10-4 
30 750,000 0 1 10-4 
31 750,000 10 0.03 10-5 
32 750,000 10 0.3 10-5 
33 750,000 10 1 10-5 
34 750,000 10 0.03 10-4 
35 750,000 10 0.3 10-4 
36 750,000 10 1 10-4 

 

 



www.manaraa.com

135 
 

It is clear from the error bars that statistically significant effects are expected in this 

dataset. For example, a linear increase in the luminance of the glare source produced higher 

subjective ratings of discomfort glare (the first 12 conditions have a luminance of 20,000 cd/m2, 

the second 12 – 205,000 cd/m2, and the third 12 – 750,000 cd/m2). Another example would be a 

source with the solid angle of 10-4 sr created more discomfort glare than did 10-5 sr (conditions 1-

3, 7-9, 13-15, 19-21, 25-27, 31-33 have a solid angle of 10-5 sr and conditions 4-6, 10-12, 16-18, 

22-24, 28-30, 34-36 have 10-4 sr (refer to Table 4-2)). 

 

Figure 4-2. Average of 47 subjective responses for each of the 36 lighting conditions 
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4.1.1 Repeated-measures ANOVA 

A repeated-measures Analysis of Variance (ANOVA) was used for the analysis of the 

rating scale data to compare the means of more than two groups. Based on a predefined alpha (α) 

level and appropriate degrees of freedom, the F-statistic is calculated for each group, and is 

compared to the critical value. If it exceeds the critical value, the null hypothesis (i.e. that the 

means for each group are the same) is rejected. ANOVA provides results for both the main 

effects and interactions. It is based on the following assumptions about the errors: (1) they are 

normally distributed, (2) they have constant variance, and (3) they are independent of each other 

(Judd et al. 2011). The first two are often seen as “robust” assumptions meaning that the 

violation of these assumptions does not result in major statistical errors (Judd et al. 2011).  

The experiment in this study was designed as a 3x2x2x3, full-factorial, repeated-

measures experiment - every level of one variable was combined with every level of all other 

variables (36 conditions in total). The null hypothesis for the effect of the luminance in the rating 

scale analysis is as follows:  

 μ��,��� ��/�^�  = μ���,�����/�^�  = μ���,�����/�^�   (4-1) 
 

Similarly, the null hypothesis for the effect of the position (the angle between the fixation 

point and the light source), the solid angle, and the background luminance are respectively: 

 μ�°  = μ��° (4-2) 
 
 μ���� = μ���� (4-3) 

      

 μ�.�� ��/�^� = μ�.� ��/�^� = μ� ��/�^� (4-4) 
 

The means and standard deviations for each level of each variable are given in Table 4-3. 

Each subject rated discomfort glare on a scale of 0-6 for each of the 36 lighting conditions.  
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The data were entered into SAS for analysis. Both the data and the SAS commands used 

for analysis are shown in Appendix R – SAS Command File for Subjective Responses Analysis. 

Table 4-4 shows the main effects and all possible interactions together with significance levels.  

Table 4-3. Means and standard deviations of the subjective responses data 

Independent 
Variable 

Level Mean (µ) 
Discomfort Glare 

Rating 

Standard Deviation 
(σ) of Discomfort 

Glare Rating 
Luminance 20,000 cd/m2 1.84 0.66 

 205,000 cd/m2 3.51 0.64 
 750,000 cd/m2 4.51 0.48 

Position  0°  3.49 0.58 
 10°  3.08 0.61 

Solid angle 10-5 sr 2.32 0.66 
 10-4 sr  4.25 0.47 

Background 
luminance 

0.03 cd/m2 3.73 0.57 

 0.3 cd/m2 3.26 0.57 
 1 cd/m2 2.86 0.59 

Table 4-4. Complete table of all effects from the ANOVA analysis of subjective responses 

data of 47 subjects  

Source df * F P 
    

Main effects    
Significant    
Luminance  2 812.05 <0.0001 

Linear effect  1 1139.57 <0.0001 
Quadratic effect 1 56.94 <0.0001 

Position  1 30.49 <0.0001 
Solid angle  1 926.81 <0.0001 
Background luminance   2 126.68 <0.0001 

Linear 1 176.59 <0.0001 
Non-significant    

Quadratic (background luminance) 1 1.25 0.2688 
    

Two-way interactions    
Significant    
Luminance X Position  2 6.66 0.002 

Linear luminance X Position 1 9.05 0.0042 
Quadratic luminance X Position 1 5.19 0.0274 

Luminance X Solid angle  2 18.95 <0.0001 
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Linear luminance X Solid angle 1 15 0.0003 
Quadratic luminance X Solid angle 1 25.36 <0.0001 

Linear luminance X Background 
luminance quadratic 

1 4.66 0.0361 

Position X Solid angle  1 20.27 <0.0001 
Position X Background luminance  2 4.88 0.0097 

Position X Quadratic background 
luminance 

1 6.21 0.0164 

    
Non-significant    
Luminance X Background luminance* 4 1.69 0.1539 

Linear luminance X Background 
luminance linear 

1 0.18 0.6771 

Quadratic luminance X Background 
luminance linear 

1 2.39 0.1289 

Quadratic luminance X Background 
luminance quadratic 

1 0.13 0.7163 

Position X Linear background luminance 1 3.82 0.0567 
Solid angle X background luminance  2 0.32 0.7276 

Solid angle X Linear background 
luminance 

1 0.36 0.5497 

Solid angle X Quadratic background 
luminance 

1 0.27 0.6038 

Three-way interactions    
Significant    
Quadratic luminance X Position X Solid 

angle* 
1 4.51 0.0392 

Quadratic luminance X Position X 
quadratic background luminance 

1 5.47 0.0237 

Luminance X Solid angle X 
Background luminance  

4 5.16 0.0006 

Linear luminance X Solid angle X Linear 
background luminance 

1 19.54 <0.0001 

    
Non-significant    
Luminance X Position X Solid angle  2 2.84 0.0634 

Linear luminance X Position X Solid 
angle 

1 1.75 0.1922 

Luminance X Position X Background 
luminance  

4 2.12 0.0798 

Linear luminance X Position X linear 
background luminance 

1 0.01 0.9202 

Linear luminance X Position X quadratic 
background luminance 

1 3.69 0.0608 
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Quadratic luminance X Position X linear 
background luminance 

1 0.00 0.9532 

Linear luminance X Solid angle X 
Quadratic background luminance 

1 0.55 0.4605 

Quadratic luminance X Solid angle X 
Linear background luminance 

1 0.09 0.7595 

Quadratic luminance X Solid angle X 
Quadratic background luminance 

1 0.54 0.4669 

Position X Solid angle X Background 
luminance  

2 0.26 0.7742 

Position X Solid angle X Linear 
background luminance  

1 0.07 0.7874 

Position X Solid angle X Quadratic 
background luminance  

1 0.51 0.4766 

    
Four-way interactions    

Significant    
Linear luminance X Position X Solid 

angle X Linear background luminance 
1 7.74 0.0078 

    
Non-significant    
Luminance X Position X Solid angle X 
Background luminance  

4 1.62 0.1704 

Linear luminance X Position X Solid 
angle X Quadratic background 

luminance 

1 0.66 0.4214 

Quadratic luminance X Position X Solid 
angle X Linear background luminance 

1 0.64 0.4293 

Quadratic luminance X Position X Solid 
angle X Quadratic background 

luminance 

1 0.01 0.9272 

*The denominator degrees of freedom for df = 1, df = 2, and df = 4 were 46, 92, and 186 
respectively. 

 

A potential violation of the homogeneity of variance assumption that underlies this 

analysis was assessed by examining the variances. According to Howell (2011), the general rule 

of thumb is that the variance in one condition should be smaller than four times the variance in 

other conditions. Additionally, if the sample sizes are equal, a violation of this assumption is 

unlikely to cause problems for statistical inference. Howell also points out that a factor of four is 

probably conservative, and using the standard approach seems appropriate when variances are 
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considerably different (i.e., more than four times as large in one condition as in another) as long 

as the sample sizes are roughly equal.  

By examining the variances of the subjective dataset, one can see three very small 

variances for conditions 28, 29, and 30 (Table 4-5). This means that subjects agreed on the worst 

conditions without much variability. These variances could potentially be problematic when 

testing differences between these and other conditions. 

Table 4-5. Variances based on subjective responses for each lighting condition 

Condition number Variance Condition number 
(continued) 

Variance 
(continued) 

 1 0.795 19 1.575 
2 0.636 20 0.997 
3 0.713 21 1.335 
4 0.992 22 1.135 
5 1.163 23 1.097 
6 1.463 24 0.673 
7 0.948 25 1.127 
8 0.880 26 1.285 
9  0.518 27 1.782 
10 1.231 28  0.042 
11 1.299 29 0.188 
12 1.043 30 0.333 
13 1.998 31 0.854 
14 1.253 32 1.352 
15 1.471 33 0.922 
16 0.428 34 0.424 
17 0.804 35 0.453 
18 0.981 36 0.997 

 

However, the variances for the main tests and two-way interactions, which were the tests 

of the primary interest in this research, met the general rule of differing by no more than 

approximately a factor of 4 (Table 4-6).  This means that the homogeneity of variance 

assumption was not violated for these tests. An examination of the variances, which were similar 
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in magnitude, indicated that neither the homogeneity of variance nor the normality assumption 

was violated.            

Table 4-6. Variances based on subjective responses in the main and the two-way 

interactions tests 

Variable level Variance Variable level (continued) Variance 
(continued) 

Luminance 1 0.431 Luminance 1 Background luminance 3 0.473 
Luminance 2 0.404 Luminance 2 Background luminance 1 0.629 
Luminance 3 0.229 Luminance 2 Background luminance 2 0.482 

Position 1 0.331 Luminance 2 Background luminance 3 0.471 
Position 2 0.367 Luminance 3 Background luminance 1 0.216 

Solid angle 1 0.441 Luminance 3 Background luminance 2 0.298 
Solid angle 2 0.222 Luminance 3 Background luminance 3 0.437 

Background luminance 1 0.323 Position 1 Solid angle 1 0.577 
Background luminance 2 0.322 Position 1 Solid angle 2 0.260 
Background luminance 3 0.349 Position 2 Solid angle 1 0.502 
Luminance 1 position 1 0.439 Position 2 Solid angle 2 0.343 
Luminance 1 position 2 0.593 Position 1 Background luminance 1 0.331 
Luminance 2 position 1 0.604 Position 1 Background luminance 2 0.343 
Luminance 2 position 2 0.492 Position 1 Background luminance 3 0.516 
Luminance 3 position 1 0.262 Position 2 Background luminance 1 0.519 
Luminance 3 position 2 0.400 Position 2 Background luminance 2 0.441 

Luminance 1 solid angle 1 0.413 Position 2 Background luminance 3 0.354 
Luminance 1 solid angle 2 0.620 Solid angle 1 Background luminance 1 0.601 
Luminance 2 solid angle 1 0.678 Solid angle 1 Background luminance 2 0.489 
Luminance 2 solid angle 2 0.355 Solid angle 1 Background luminance 3 0.554 
Luminance 3 solid angle 1 0.523 Solid angle 2 Background luminance 1 0.224 
Luminance 3 solid angle 2 0.125 Solid angle 2 Background luminance 2 0.306 
Luminance 1 Background 

luminance 1 
0.479 Solid angle 2 Background luminance 3 0.325 

Luminance 1 Background 
luminance 2 

0.574   

 

A set of four graphs for this 3x2x2x3 design was created to show all 36 cell means 

(Figure 4-3 to Figure 4-6).   
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Figure 4-3. Interaction of the glare source luminance and the background luminance for 

position 0˚ and a solid angle of 10-5 sr 

 

Figure 4-4. Interaction of the glare source luminance and the background luminance for 

position 10˚ and a solid angle of 10-5 sr 
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Figure 4-5. Interaction of the glare source luminance and the background luminance for 

position 0˚ and a solid angle of 10-4 sr 

 

Figure 4-6. Interaction of the glare source luminance and the background luminance for 

position 10˚ and a solid angle of 10-4 sr 
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4.1.1.1 Significant main effects 

The linear effect of the glare source luminance indicates that a greater luminance results 

in higher subjective ratings of discomfort glare. In other words, a luminance of 750,000 cd/m2 

results in subjective ratings of discomfort glare that are significantly higher than a luminance of 

20,000 cd/m2. The quadratic effect of glare source luminance indicates that subjective responses 

to discomfort glare increase as the luminance increases from 20,000 to 205,000 cd/m2, after 

which the rate of increase is lower (from 205,000 cd/m2 to 750,000 cd/m2) (Figure 4-7).  

The main effect of the position indicates that discomfort glare is greater for the source 

located at the 0° position (on the line of sight) than at the 10° position (Figure 4-8).   

The main effect of the solid angle shows that discomfort glare is higher for the larger 

glare source (10-4 sr) than for the smaller source (10-5 sr) (Figure 4-9). 

The linear effect of the background luminance shows that the lower the background 

luminance the greater the discomfort glare (Figure 4-10). Discomfort glare increases when the 

background luminance decreases from 1 cd/m2 to 0.03 cd/m2.  

The analysis showed that discomfort glare increases with an increase of the luminance of 

the glare source, an increase of its size, a decrease of the angle between the fixation point and the 

glare source, as well as a decrease of the background luminance.  
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Figure 4-7. Main effects of the glare source luminance 

 

Figure 4-8. Main effect of the position 
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Figure 4-9. Main effect of the solid angle 

 

Figure 4-10. Main effects of the background luminance 
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4.1.1.2 Significant interactions 

The significant interaction between the linear effect of the glare source luminance and the 

source position shows that the linear increase in perceived discomfort glare as a function of the 

luminance increase was especially true for a source located at the 0° position compared to the 

10° position. The quadratic effect shows that the perception of discomfort glare increases more 

initially (from 20,000 cd/m2 to 205,000 cd/m2) than subsequently (from 205,000 cd/m2 to 

750,000 cd/m2), especially for the 0° position when compared to the 10° position. 

The linear increase in perceived discomfort glare as a function of the luminance was 

especially true for a glare source of solid angle 10-4 sr when compared to a source of solid angle 

of 10-5. The quadratic effect between the luminance and its solid angle shows that the perception 

of discomfort glare is increased more initially (from 20,000 cd/m2 to 205,000 cd/m2) than 

subsequently (from 205,000 cd/m2 to 750,000 cd/m2), which is especially true for a larger source 

(10-4 sr) when compared to a smaller source (10-5 sr).  

A significant two-way interaction between the linear effect of the glare source luminance 

and the quadratic effect of the background luminance shows that there is more discomfort glare 

when the glare source luminance is increased, especially when the background luminance 

decreases from 0.3 to 0.03 cd/m2 compared to a decrease from 1 to 0.3 cd/m2 (Figure 4-11).   

The two-way interaction between the position and the solid angle of the glare source 

indicates that the perception of discomfort glare is higher for a larger source than for a smaller 

source, which is especially true for the source on the line of sight (0°) than for the source that is 

10° above the line of sight.  
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Figure 4-11. Interaction of the glare source luminance with the background luminance 

The interaction between the position of the glare source and the quadratic effect of the 

background luminance shows that the perception of discomfort glare is higher from a glare 

source on the line of sight than one 10° above the line of sight, especially for the darker 

backgrounds (0.03-0.3 cd/m2) than for the brighter ones (0.3-1 cd/m2).  

Finally, there are significant three-way interactions and one four-way interaction. The 

three-way interaction between the glare source position, its solid angle, and the quadratic effect 

of its luminance indicates that discomfort glare increases as luminance increases from 20,000 to 

205,000 cd/m2, after which the rate of increase is smaller (from 205,000 cd/m2 to 750,000 

cd/m2), especially for a larger source (10-4 sr vs 10-5 sr) on the line of sight (0° vs 10°). 

The perception of discomfort glare increases for the glare source on the line of sight (0° 

vs 10°) as the luminance increases from 20,000 to 205,000 cd/m2, after which the rate of increase 

is less (from 205,000 cd/m2 to 750,000 cd/m2), especially true for darker backgrounds when 

compared to brighter ones (0.03 to 0.3 vs 0.3 to 1 cd/m2). 
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The three-way interaction between the luminance, the solid angle of the glare source, and 

the background luminance shows that as the background luminance decreases from 1 to 0.03 

cd/m2, the perception of discomfort glare increases, in particular for a larger source (10-4 to 10-5) 

of a higher luminance (the linear effect of luminance).  

Although the four-way interaction between the luminance of the glare source, its position, 

its solid angle, and the background luminance is not of primary interest, it is significant. This 

interaction indicates that as the background luminance decreases from 1 to 0.03 cd/m2, the 

perception of discomfort glare increases, in particular for a larger source (10-4 to 10-5) on the line 

of sight (compared to 10°) as luminance of the glare source increases from 20,000 to 750,000 

cd/m2.  

4.1.2 Correlation Analysis  

Based on the subjective rating data, one can examine which discomfort glare metric 

correlates best with subjective responses to discomfort glare in the ranges of conditions tested in 

this study.  

Predictions of discomfort glare by four existing metrics were compared to subjective 

responses for all 36 experimental lighting conditions in this study. The metrics used in the 

comparison analysis were the outdoor sports and area lighting metric – metric 1 (CIE 112-1994), 

the motor vehicle lighting metric – metric 2 (Schmidt-Clausen and Bindels 1974), the 

combination of two metrics by Bullough’s et al. – metric 3 (2008, 2011), and the UGR small 

source extension – metric 4 (CIE146,147-2002). 

Predictions by each discomfort glare metric were correlated with subjective responses 

across conditions for each subject. These correlations were transformed, using Fisher’s z 
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transformation, and compared, using dependent sample t-tests, to see which, if any, of the glare 

metrics correlated better with the subjective responses.  

The first step was to calculate the metrics’ predictions of discomfort glare for the 36 

experimental conditions. During the course of the study, the experimenter collected multiple 

measurements of the apparatus to ensure the consistency of the stimuli (section 3.7). The 

averages of photometric measures collected over time were used in the calculations. For 

example, the background luminance was measured multiple times – before the start of the 

experiment, after subjects 18, 34, 44, and 56 (at the end of the study). Then, the background 

luminance measurements were averaged over time and used in each metric’s calculation that 

incorporates a background luminance parameter in its equation (in this case, metric 1, 2, and 4). 

Each of the four discomfort glare metrics has a validity range. Some existing metrics are 

not defined for certain input values and result in infinitely large numbers. For example, the 

outdoor sports and area lighting metric (metric 1) and the motor vehicle lighting metric (metric 

2) cannot predict discomfort glare when a subject looks directly at the glare source. In this case, 

the angle between the line of sight and the position of the glare source is 0˚, and the discomfort 

glare prediction becomes infinite, which does not reflect reality. Therefore, meaningful 

substitutions of these problematic values had to be made in order to calculate and compare the 

predictions.  

Two ways to address the problematic input values were considered. One way was to 

substitute these values with a small number that would allow the calculation of predictions. 

However, it should be acknowledged this kind of substitution would result in input values 

outside the validity range of some metrics. For example, a substitution of an angle different from 

0°, such as 1 min. arc, is outside the validity range of the outdoor sports and area lighting metric 
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as specified by the CIE (112-1994) – the angle should be between 1.5° to 60°. Another way to 

calculate the predictions was to substitute input values for the metrics with values that fall within 

their validity range. However, those substitutions would not be representative of the actual 

lighting conditions that the subjects assessed in this study. Therefore, the author chose the first 

method, because the goal was to determine which metric correlates best with subjective 

responses collected in this study.  As such, the predictions should be calculated with values as 

close to the experimental conditions as possible. 

Metrics 2 and 3 use inverted scales when compared to the subjective scale used in the 

current study (in metric 2 and 3, smaller values indicate more glare). This would result in a 

negative sign of the correlation coefficient, if a correlation indeed existed. To simplify the 

comparison, the scales were inverted by subtracting the resulting glare prediction as calculated 

by the metrics 2 or 3 from the number 10. This made the direction of the effect in all four metrics 

the same – larger numbers mean more glare. The step-by-step calculations of each metric’s 

predictions for all 36 lighting conditions are discussed in Appendix S.  

Table 4-7 shows the predictions of the 36 lighting conditions as calculated by each of the 

four tested metrics. Numbers in bold cursive fall outside the scale’s range for that metric. The 

values were graphed in Figure 4-12. Since the scales of discomfort glare metrics are so different 

(e.g. 1-9 and 10-90 with values exceeding the maximum), two axes were used to better display 

the curves. Subjective responses, metrics 2 and 3 are shown on the left vertical axis (round 

markers). Metrics 1 and 4 are shown on the right vertical axis (triangular markers).  
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Table 4-7. Discomfort glare in the 36 lighting conditions as assessed in this study and 

calculated by four discomfort glare metrics  

Number of 
the 

condition 

AVERAGE 
subjective 

rating from 
this study 

Calculations 
by the outdoor 

sports and 
area  lighting 
metric 1994  
(metric 1) 

Calculations 
by the motor 

vehicle 
lighting metric 

1974       
(metric 2) 

Calculations 
by the outdoor 

lighting 
installation 

(two equations 
2008, 2011) 
(metric 3) 

Calculations 
by the UGR 
small source 

extension 
metric 2002  
(metric 4) 

Scales (to 
the right) 

0 – no DG 
1 –  between 
non-existent 
and 
noticeable 
2 – noticeable 
3 – between 
noticeable 
and 
disagreeable 
4 – 
disagreeable 
5 – between 
disagreeable 
and 
intolerable 
6 – 
intolerable 

10 – 
unnoticeable 
20 
30 –noticeable 
40 
50 – just 
admissible 
60 
70 - disturbing 
80 
90 - unbearable 

9 – noticeable 
8 
7 – acceptable 
6 
5 – just 
admissible 
4 
3 – disturbing 
2 
1 – unbearable  

9 –just 
noticeable 
8 
7 – satisfactory 
6 
5 – just 
permissible 
4 
3 – disturbing 
2 
1 – unbearable  

10 – 
imperceptible 
16 – 
perceptible 
19 – just 
acceptable 
22 – 
unacceptable 
25 – just 
uncomfortable 
28 – 
uncomfortable 
31 – just 
intolerable 
(1999 Mistrick) 

Scales 
inverted (to 
the right) 

  INVERTED 
1 – noticeable 
2 
3 – acceptable 
4 
5 – just 
admissible 
6 
7 – disturbing 
8 
9 – unbearable 

 

INVERTED 
1–just 
noticeable 
2 
3 – satisfactory 
4 
5 – just 
permissible 
6 
7 – disturbing 
8 
9 – unbearable  

 

1 1.3 179 7.9 4.1 14.0 
2 0.9 158 7.3 2.7 6.3 
3 0.9 147 6.8 1.5 2.1 
4 3.4 205 10.0 5.9 30.0 
5 2.6 184 9.4 5.4 22.3 
6 2.4 173 9.0 5.1 18.1 
7 1.4 49 5.5 4.4 12.3 
8 1.1 28 4.9 3.3 4.6 
9 0.6 17 4.5 2.3 0.4 
10 2.8 74 7.7 6.1 28.3 
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11 2.5 54 7.1 5.6 20.6 
12 1.8 42 6.6 5.3 16.4 
13 3.0 205 10.0 6.4 30.3 
14 2.5 184 9.4 5.9 22.6 
15 2.0 173 9.0 5.6 18.4 
16 5.5 231 12.2 8.5 46.3 
17 5.0 210 11.6 8.2 38.6 
18 4.6 199 11.1 8.0 34.4 
19 2.9 72 7.5 6.4 27.9 
20 2.2 51 6.9 5.9 20.2 
21 1.7 40 6.4 5.6 16.0 
22 4.7 98 9.6 8.6 43.9 
23 4.1 77 9.0 8.3 36.2 
24 3.7 65 8.6 8.1 32.0 
25 4.2 218 11.1 7.1 39.1 
26 3.6 197 10.5 6.8 31.4 
27 3.1 186 10.1 6.5 27.2 
28 6.0 244 13.3 9.7 55.1 
29 5.8 223 12.7 9.4 47.4 
30 5.6 212 12.3 9.3 43.2 
31 3.8 85 8.5 7.1 36.5 
32 3.3 64 7.9 6.8 28.8 
33 2.8 53 7.5 6.5 24.6 
34 5.5 111 10.7 9.7 52.5 
35 5.3 90 10.1 9.5 44.8 
36 4.8 78 9.7 9.3 40.6 
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Figure 4-12. Predictions of discomfort glare by four metrics from the literature and 

subjective data from this study 

 

The correlation analysis description 

For each subject the correlation between subjective ratings and predictions of discomfort 

glare by each of the four metrics was computed across conditions (see the SAS code in Appendix 

T). Each of the 47 correlations (one for each subject) represented the magnitude and direction of 

the relationship between subjective ratings and one of the four metrics’ predictions across the 36 

conditions. To test whether the mean correlation differed from zero, Fisher’s z transformation 
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(equation (4-5)) was applied to the correlation coefficients. This transformation corrects potential 

violations of normality and homogeneity of variance, which are common when correlations are 

themselves the variables of interest (Judd et al. 2011). 

 
Fisher’s z transformation = 

1

2
∙ �� �

1 + �

1 − �
� (4-5) 

 

The correlation coefficient (converted from the z-transformed coefficient back to the 

original metric) between subjective responses and metric 1 is 0.405; between subjective 

responses and metric 2 it is 0.792; between subjective responses and metric 3 it is 0.860; finally, 

between subjective responses and metric 4 it is 0.879 (Table 4-8). 

Table 4-8. Correlation coefficients between metrics’ predictions and subjective responses in 

this study 

Metric Correlation with subjective responses, r 
Outdoor sports and area lighting (1)  0.405 

Motor vehicle lighting (2) 0.792 
Bullough’s et al. metrics (3) 0.860 

UGR small source extension (4)  0.879 
 

The z-transformed coefficients were treated as the dependent measures. The difference 

for each possible pair of correlation coefficients was tested for significance when compared to 

zero. 

The differences of all pairs of correlation coefficients were statistically significant from 

zero (Table 4-9). This means that each correlation coefficient is significantly different from any 

other. 

The UGR small source extension correlates best with subjective responses in the range of 

conditions tested in this study when compared to any other of the three metrics. The combination 

of the Bullough’s et al. metrics correlates better than the motor vehicle lighting and the outdoor 
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sports and area lighting metrics. Finally, the motor vehicle lighting metric correlates better with 

subjective responses than the outdoor sports and area lighting metric.  

Table 4-9. Testing the difference between the correlation coefficients 

Compared pair Mean difference T-test, p 
Outdoor sports and area lighting (1) with 

Motor vehicle lighting (2) 
-0.459 t = -56.6, p<0.0001 

Motor vehicle lighting (2) with 
Bullough’s et al. (3) 

-0.153 t = -5.1, p<0.0001 

Bullough’s et al. (3) with Outdoor sports 
and area lighting (1) 

0.611 t = 20.0, p<0.0001 

UGR small source extension (4) with 
Outdoor sports and area lighting (1)  

0.667 t = 23.8, p<0.0001 

UGR small source extension (4)with 
Motor vehicle lighting (2)  

0.208 t = 7.7, p<0.0001 

UGR small source extension (4) with 
Bullough’s et al. (3)  

0.055 t = 5.5, p<0.0001 

 

The best metric as determined by the above analysis is the UGR small source extension (r 

= 0.879) as seen in Figure 4-13. This means that the UGR small source extension accounts for a 

significantly larger variation in subjective responses than the other three metrics in the range of 

conditions tested in this study. However, the correlation coefficient for the combination of 2008 

and 2011 Bullough’s et al. metrics (second best) with subjective responses is also relatively high 

(r=0.860) (Figure 4-14).  
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Figure 4-13. UGR small source extension predictions of discomfort glare and subjective 

responses in this study 

 

Figure 4-14. Bullough’s et al. metrics (2008, 2011) predictions of discomfort glare and 

subjective responses in this study 
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4.2 Eye Tracking Data Analysis 

The second body of data is the eye tracking (pupil) data that were collected with the 

remote eye tracking device ETL-100 (by ISCAN) consisting of an infra-red eye illuminator and a 

camera unit aimed at the left eye of the subject. The pupil diameter was recorded for 12 seconds 

(720 individual data points) for each condition and each subject (e.g. Figure 4-1). 

Eye Tracking Data Statistical Analysis 

A repeated-measures ANOVA was applied to the pupil data similarly to the rating scale 

data. Then, correlations between the pupil data and the rating data were examined.  

4.2.1 Examination of the Pupil Data in the No-Glare State 

The initial pupil diameter in this study is the diameter of the pupil when no glare source 

was present (Figure 3-69, Figure 4-1). It was averaged across all 36 conditions for each of the 47 

subjects, and plotted as a function of the subject’s age (Figure 4-15). A simple correlation of the 

average initial pupil diameter with the subjects’ age indicated that older people had lower 

average pupil diameters than younger people, r = -0.51440, p = 0.0002. In addition to age, 

another self-reported measure was whether the subject had caffeine on the day of the experiment 

(Figure 4-15). The average initial pupil diameter for subjects who had caffeine (36 subjects) was 

4.7 mm; for those who did not (11 subjects), it was 5.2 mm. No statistical tests were done with 

the caffeine data, because the mean in the no-caffeine group was based on only 11 subjects. 

These data were provided for descriptive purposes only. 
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Figure 4-15. Average initial pupil diameter and age for each of the 47 subjects  

The average initial pupil diameter for all 47 subjects in each of the 36 conditions is 

plotted in Figure 4-16. Since the initial pupil state is the no-glare state, the only difference 

between every block of three conditions (refer to Table 4-2 for the 36 conditions) in the figure is 

the background luminance (0.03; 0.3, 1 cd/m2) - the darker the background luminance, the more 

dilated the pupil. These data correspond to the literature (Rea 2013). The average initial pupil 

diameter for the background luminance of 0.03 cd/m2 is 5.4 mm, for 0.3 cd/m2 is 4.8 mm, for 1 

cd/m2 is 4.3 mm. 
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Figure 4-16. Average initial pupil diameter (during the adaptation stage) in each of the 36 

conditions 

 

4.2.2 Pupil Data Analysis 

The relative pupil size (RPS) was chosen as a dependent variable in the analysis of the 

pupil data and was computed as follows: 

 

��� =
(����� −

����� + ����� + �����

3 )

�����
 (4-6) 

 

Where  

dinit is the average initial pupil diameter before a glare source was presented, in mm; 

dmin is the minimum pupil diameter in a glare state (during each of the three flashes of the 

glare source) (Figure 4-1), in mm. 
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The RPS was chosen, because the absolute pupil size varies for subjects of different ages 

(Figure 4-15). It also depends on the adaptation luminance (DiLaura et al. 2011). This relative 

measure takes into account the pupil diameter before the glare was presented to the subjects - the 

adaptation state in this study. The RPS averaged across the 36 conditions for each of the 47 

subjects is shown as a function of age in Figure 4-17.  

 

Figure 4-17. Relative pupil size (RPS) averaged across 36 lighting conditions and age for 

each of the 47 subjects 

Descriptive statistics 

Before proceeding to the ANOVA analysis, interesting insights can be gained simply by 

looking at the RPS means (Table 4-10). For example, an increase in the glare source luminance 

(more light enters the pupil) causes more pupil constriction (higher RPS). However, the 

difference in RPS is 0.087 when the luminance is increased from 20,000 to 205,000 cd/m2, and 

only 0.032 when the luminance is increased from 205,000 to 750,000 cd/m2. The expected 
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direction of the effect (the more light at the eyes, the more the pupil constricts) was observed 

with the glare source luminance, its position and its solid angle effects. However, the background 

luminance effect indicated that the higher the background luminance, the smaller the RPS. This 

means that the lower the background luminance was, the more the pupil constricted during the 

glare presentation when compared to its initial state.  

Table 4-10. Table with means and standard deviations of the pupil data 

Independent 
Variable 

Level Mean (µ) RPS Standard Deviation 
(σ) of RPS 

Luminance 20,000 cd/m2 0.288 0.054 
 205,000 cd/m2 0.375 0.050 
 750,000 cd/m2 0.407 0.052 

Position  0°  0.386 0.053 
 10°  0.328 0.048 

Solid angle 10-5 sr 0.316 0.052 
 10-4 sr  0.398 0.049 

Background 
luminance 

0.03 cd/m2 0.426 0.048 

 0.3 cd/m2 0.350 0.053 
 1 cd/m2 0.294 0.055 

 
Figure 4-18 demonstrates the RPS for each of the 36 conditions (refer to Table 4-2) 

averaged across 47 subjects with 95% confidence intervals shown as error bars. Each block of 

three conditions differs in the background luminance only. For example, the first three conditions 

all have luminance of 20,000 cd/m2, position 0˚, solid angle 10-5 sr, but condition one has a 

background luminance of 0.03 cd/m2, condition two has 0.3 cd/m2, condition three has 1 cd/m2. 
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Figure 4-18. Relative pupil size averaged across 47 subjects for each of the 36 lighting 

conditions 

The RPS data were examined for outliers. Outliers are extreme observations that are 

dramatically inconsistent with the other observations in a dataset. If not carefully examined, 

outliers can distort the results.  In some cases, outliers can provide unexpected interesting 

insights about data (Judd et al. 2011).  

Figure 4-19 shows a scatterplot of the RPS values and the subjective responses. There are 

four outliers (negative numbers) in the RPS dataset, one being very different from the other 

observations in this dataset (one outlier for each subject ID 8 and 41, and two for ID 46). The 

negative RPS value means that the pupil diameter was smaller in the initial state than in the glare 

state (Figure 4-20), which was not expected.  The initial pupil diameter (in the no-glare state) 

was expected to be larger than during the glare presentation, since more light enters the pupil in 
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the latter case. In four of the 1692 observations, this was not the case. The outliers might 

potentially arise from the pupil’s condition in a half-awake state due to the observed “sleepy” 

behavior of a subject (e.g. subject ID 41). According to Rea, during sleep the pupils are always 

contracted (2013). 

 

Figure 4-19. Scatterplot of subjective responses and relative pupil sizes for 47 subjects for 

36 conditions 
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Figure 4-20. An example of a pupil file of a subject in the “sleepy” state. The initial pupil is 

smaller than the average pupil in the glare state. 

However, after examining the notes for the other two subjects (ID 8, 46), no indication of 

the “sleepy” state was mentioned. The true reason for these outliers is unknown. One might 

hypothesize that there was a problem with the apparatus during the test. Unfortunately, 

illuminances during the test were not recorded for either of these subjects (ID 8 and 46) due to a 

communication error that happened during the test. The commands from the controls software 

were successfully transmitted to the devices to set the experimental conditions, but no readings 

were received in response. This happened for three of the 47 subjects (the third one being ID 42). 

However, the apparatus appeared to work correctly, because the pattern of the subjective 
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judgements from these subjects did not show any abnormalities when compared to responses 

from other subjects in this study.  

The main concern with the outliers is whether they influence the conclusions. If the 

conclusions are the same in the test with outliers and in the test without them, then the outliers 

are not a problem (Judd et al. 2011). The analysis with all 47 subjects including those with 

outliers and the analysis with 44 subjects without outliers did not change the main conclusions in 

this research. Of all effects tested, only one three-way interaction between the quadratic effect of 

luminance, position, and solid angle changed from marginally significant (F = 4.57, p = 0.0378) 

to insignificant (F = 2.53, p = 0.1193). Therefore, the subsequent analysis was conducted with 

the inclusion of the outliers (Judd et al. 2011). 

4.2.3 Repeated-measures ANOVA 

Similar to the ANOVA analysis of the subjective data (section 4.1.1), ANOVA was used 

for the analysis of the RPS data. It is a full-factorial 3x2x3x2 design. The experimenter analyzed 

RPS data of 47 subjects as a function of the glare source luminance, its size, its position, and the 

background luminance with repeated-measures on all factors. The main effects and all possible 

interactions with significant levels from the ANOVA analysis of pupil data are listed in Table 

4-11. 
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Table 4-11. Complete table of all effects from the ANOVA analysis of pupil data of 47 

subjects  

Source df * F P 
    

Main effects    
Significant    
Luminance  2 309.56 <0.0001 

Linear effect  1 364.37 <0.0001 
Quadratic effect 1 100.25 <0.0001 

Position  1 225.54 <0.0001 
Solid angle  1 424.33 <0.0001 
Background luminance   2 390.34 <0.0001 

Linear 1 467.38 <0.0001 
Quadratic 1 17.34 <0.0001 

    
Two-way interactions    

Significant    
Luminance X Position  2 28.79 <0.0001 

Linear luminance X Position 1 37.65 <0.0001 
Quadratic luminance X Position 1 11.78 0.0013 

Luminance X Solid angle  2 8.24 0.0005 
Linear luminance X Solid angle 1 17.67 <0.0001 

Position X Solid angle  1 40.10 <0.0001 
Position X Background luminance  2 7.11 0.0013 
Position X Linear background luminance 1 10.16 0.0026 
Solid angle X background luminance  2 4.76 0.0108 

Solid angle X Linear background 
luminance 

1 7.6 0.0083 

    
Non-significant    
    

Quadratic luminance X Solid angle 1 0.08 0.7795 
Luminance X Background luminance  4 1.67 0.1593 

Linear luminance X Background 
luminance linear 

1 3.47 0.0687 

Linear luminance X Background 
luminance quadratic 

1 0.02 0.8761 

Quadratic luminance X Background 
luminance linear 

1 0.18 0.6763 

Quadratic luminance X Background 
luminance quadratic 

1 2.34 0.1326 

Position X Quadratic background 
luminance 

1 2.3 0.1364 
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Solid angle X Quadratic background 
luminance 

1 0.08 0.7735 

    
Three-way interactions    

Significant    
Quadratic luminance X Position X Solid 

angle 
1 4.57 0.0378 

Luminance X Solid angle X 
Background luminance  

4 4.6 0.0015 

Linear luminance X Solid angle X Linear 
background luminance 

1 15.77 0.0002 

    
Non-significant    
    
Luminance X Position X Solid angle  2 2.48 0.0893 

Linear luminance X Position X Solid 
angle 

1 0.04 0.8338 

Luminance X Position X Background 
luminance  

4 0.95 0.4364 

Linear luminance X Position X linear 
background luminance 

1 0.85 0.3623 

Linear luminance X Position X quadratic 
background luminance 

1 1 0.3235 

Quadratic luminance X Position X linear 
background luminance 

1 1.21 0.2780 

Quadratic luminance X Position X 
quadratic background luminance 

1 0.69 0.4114 

Linear luminance X Solid angle X 
Quadratic background luminance 

1 0.05 0.8314 

Quadratic luminance X Solid angle X 
Linear background luminance 

1 0.9 0.3488 

Quadratic luminance X Solid angle X 
Quadratic background luminance 

1 0.35 0.5591 

Position X Solid angle X Background 
luminance  

2 0.06 0.9461 

Position X Solid angle X Linear 
background luminance  

1 0.09 0.7710 

Position X Solid angle X Quadratic 
background luminance  

1 0.03 0.8625 

    
Four-way interactions    

    
Non-significant    
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Luminance X Position X Solid angle X 
Background luminance  

4 1.12 0.3495 

Linear luminance X Position X Solid 
angle X Linear background luminance 

1 0.00 0.9995 

Linear luminance X Position X Solid 
angle X Quadratic background 

luminance 

1 1.96 0.1687 

Quadratic luminance X Position X Solid 
angle X Linear background luminance 

1 2.29 0.1369 

Quadratic luminance X Position X Solid 
angle X Quadratic background 

luminance 

1 0.89 0.3499 

*The denominator degrees of freedom for df = 1, df = 2, and df = 4 were 46, 92, and 186 
respectively.  

In order to graphically show the 3x2x3x2 factorial design, a set of four graphs was used. 

The interactions of the glare source and the background luminances for the two positions and the 

two sizes are shown on the following four graphs (Figure 4-21 Figure 4-24).  

 

Figure 4-21. Interaction of the glare source luminance and the background luminance for 

position 0° and a solid angle of 10-5 sr 
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Figure 4-22. Interaction of the glare source luminance and the background luminance for 

position 10° and a solid angle of 10-5 sr 

 

Figure 4-23. Interaction of the glare source luminance and the background luminance for 

position 0° and a solid angle of 10-4 sr 
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Figure 4-24. Interaction of the glare source luminance and the background luminance for 

position 10° and a solid angle of 10-4 sr 

4.2.3.1 Significant main effects 

The linear effect of the glare source luminance indicates that a greater luminance results 

in a greater pupil constriction, such that a luminance of 750,000 cd/m2 constricts the pupil 

diameter significantly more than does a luminance of 20,000 cd/m2. The quadratic effect 

indicates that the constriction of the pupil increases as the luminance increases from 20,000 to 

205,000 cd/m2, after which the rate of increase is lower (from 205,000 cd/m2 to 750,000 cd/m2) 

(Figure 4-25).   

The pupil constriction is greater when a glare source is located at the 0° position when 

compared to the 10° position (Figure 4-26).  

The pupil constriction is also greater for a larger glare source (10-4 sr) than for a smaller 

source (10-5 sr) (Figure 4-27). 
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The linear effect of the background luminance shows that the lower the background 

luminance the more the pupil constricts (Figure 4-28). The quadratic effects shows that the pupil 

constriction decreases more initially (when the background luminance is increased from 0.03 to 

0.3 cd/m2) than subsequently (from 0.3 to 1 cd/m2).  

  

Figure 4-25. Main effects of the luminance of the glare source on the pupil data 

 

Figure 4-26. Main effect of the position on the pupil data 
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Figure 4-27. Main effect of the solid angle of the glare source on the pupil data 

 

Figure 4-28. Main effects of the background luminance on the pupil data 

 

4.2.3.2 Significant interactions 

The larger the luminance the greater the constriction, this is especially true for a source 

located at the 0° position when compared to the 10° position. The quadratic effect shows that the 

pupil constriction increases more initially (from 20,000 cd/m2 to 205,000 cd/m2) than 
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subsequently (from 205,000 cd/m2 to 750,000 cd/m2), especially for a source located at the 0° 

position when compared to the 10° position. 

There is another significant two-way interaction between the luminance of the glare 

source and its solid angle, such that a higher luminance results in a greater pupil constriction, 

especially for the glare source with a solid angle of 10-4 sr when compared to a source with a 

solid angle of 10-5 sr.  

A significant two-way interaction between the position and the solid angle of the glare 

source indicates that pupils constrict more when the glare source is positioned on the line of sight 

(when compared to the 10° position above the line of sight) for the source of size 10-4 sr versus 

10-5
 sr.  

There is a significant interaction between the position of the glare source and the 

background luminance. For the glare source on the line of sight the pupil constriction is higher, 

especially if the background luminance is lower.  

There is a significant interaction between the solid angle of the glare source and the linear 

effect of the background luminance. The pupils constrict more with the decrease of the 

background luminance, especially true for a larger glare source (10-4 sr vs 10-5 sr).  

The three-way interaction of the quadratic effect of the luminance, position, and the solid 

angle of the glare source is significant. It shows that the pupil constriction increases more 

initially (when the luminance increases from 20,000 to 205,000 cd/m2) than subsequently (when 

the luminance increases from 205,000 to 750,000 cd/m2) from a glare source on the line of sight 

(vs 10°), especially for a larger glare source (10-4 vs 10-5 sr). 

Finally, another three-way interaction of the glare source luminance, its solid angle, and 

the background luminance indicates that the increase in the glare source luminance causes a 
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greater pupil constriction for the larger source (10-4 vs 10-5 sr), especially with the decrease in the 

background luminance.  

4.2.4 Correlation of Pupil Data with Subjective Responses 

For each subject the correlation between the subjective ratings and the RPS values across 

36 conditions was computed. The analysis was similar to the correlation analysis of the 

subjective data (section 4.1.2). There is a statistically significant mean correlation (converted 

from the mean z-correlation coefficient back to the original metric) between the subjective 

responses and the RPS values r = 0.659 (r2 = 0.434), F = 584.92, p < 0.0001 (SAS code is shown 

in Appendix V). About 43% of the variation in RPS is related to the variation in discomfort 

glare. In other words, on average, when subjects perceive more discomfort glare, their pupils 

constrict more when compared to the no-glare condition. This does not explain the causation 

however (discomfort might cause pupils to constrict, or the pupil constriction might cause 

discomfort, or a common cause is involved in the relationship).  

4.3 EMG Data Analysis 

The third body of data is the EMG readings recorded through electrodes placed on the 

subject’s face in the area of orbicularis oculi (Figure 3-68). The EMG data were not analyzed in 

this study due to three major problems, the first two being of a similar nature. First, the actual 

timing of the EMG data was unclear. Therefore, it was not possible to identify which parts of the 

signal represent a glare/no-glare state and which parts should be included in the computation of 

the MAC indices.  Second, there were randomly missing values in the recorded data files. 

Finally, it was unknown whether the data received from the EMG Machine were processed 

before being transmitted and recorded by the laptop. Each problem is explained in detail in 

Appendix W. 
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CHAPTER 5 – CONCLUSIONS 

The retina derives from the same tissue out of which the brain itself develops.  
It is a direct extension of the central nervous system. 

- Sekuler and Blake 1990  
 

5.1 Objectives 

This research had four primary objectives. The overarching goal was to study discomfort 

glare from small, high luminance light sources, particularly from LEDs, in outdoor nighttime 

environments. Consequently, the second goal was to determine which existing outdoor 

discomfort glare metric correlates best with the subjective data collected in this study. The third 

intention was to examine the pupil’s reaction to discomfort glare. Finally, the fourth goal was to 

measure the activity of the orbicularis oculi - the principle muscle responsible for closing the 

eyes - in response to discomfort glare, analyze the MAC indices, and compare them to the 

subjective and the pupil data. In this chapter, the results are discussed and future research 

directions are proposed.   

5.2 Interpretations and Discussions 

The following sections describe the interpretation of the results for each dataset 

separately and then provide a discussion of the overall framework.  

5.2.1 Discomfort Glare from Small, High Luminance Sources in Outdoor Nighttime 

Environments 

The subjective rating experiment confirmed the results from previous glare research that 

the glare source luminance, its position, its solid angle, and the background luminance have 

significant effects on discomfort glare. An increase in the luminance of the glare source as well 

as an increase in its solid angle cause more glare. Similarly, a decrease in the angle between the 

fixation point and glare source and a decrease of background luminance result in more glare.  
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In previous studies on small light sources in dark environments, researchers investigated 

the borderline between comfort and discomfort (BCD) sensation (e.g. Bennett 1977b, Putnam 

and Gillmore 1957). In this current study, glare was rated on a differential scale, because multi-

label scales were found to better represent the amount of glare (De Boer and Schreuder 1967). 

Bennett (1977b) studied the relationships between the BCD and the solid angle of the 

light source (10-3 - 10-6 sr), the background luminance (0.00343 - 34.26 cd/m2), and the position 

(0º - 30º) with 97 observers. He found that subjects tolerate higher BCDs with an increase in 

background luminance, a decrease in the solid angle, and an increase in the source position. This 

study shows the same patterns in the data.  

Other previous studies showed that the admissible glare luminance (BCD) increases with 

glare source position (Putnam and Gillmore 1951, Benz 1966, Bennett 1977b). This means that 

subjects tolerate higher glare when the angle between the fixation point and the glare source is 

larger. This current research showed a similar result, namely that the larger the angle between the 

fixation point and the glare source, the smaller the sensation of discomfort the subjects reported. 

Background luminance reduces the amount of discomfort – subjects tolerate higher glare 

luminance with an increase in background luminance (Putnam and Faucett 1951, Bennett 

1977b). Benz also found that higher ambient (background) luminances reduce unpleasant 

sensations, however, the effect was not significant in his study (potentially due to the small 

number of subjects – he only tested seven). This current research confirmed the effect of 

background luminance on discomfort glare. The data showed a significant linear effect of the 

background luminance on the perception of discomfort glare. The higher the background 

luminance, the less discomfort was reported.    
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Putnam and Faucett found that with an increase in the background luminance, the BCD 

values increased for various source sizes in their study with fifteen subjects (1951). The slopes 

for different solid angle curves were different in the relationship between BCD and background 

luminance. Examining the slopes of the curves essentially means examining the interactions 

between the variables, however, the authors did not report any statistic. In this current research, 

the interaction between the solid angle and the background luminance was not significant. 

Bennett also compared his work (1977b) to Putnam and Faucett’s work (1951), and concluded 

that Putnam and Faucett’s lower BCD values compared to Bennet’s work could have potentially 

been influenced by specific instructions given to the subjects such as “BCDs should never be 

high”.   

5.2.2 Existing Metric that Correlates Best with Subjective Responses 

The correlation analysis in this research validated the UGR small source extension (CIE 

146,147-2002) and Bullough’s et al. (2008, 2011) metrics with human subjects data within the 

ranges of the variables tested. 

The UGR small source extension correlated best with the subjective responses collected 

in this study when compared to the other three outdoor discomfort glare metrics. The UGR small 

source values calculated for the 36 lighting conditions in this research were in the range of 0.4 to 

55.1. Four of the 36 conditions resulted in values smaller than 10, and sixteen of 36 in values 

larger than 30 (Table 4-7). In the technical document (CIE 117-1995), the CIE specifies the 

range of 10 (imperceptible) to 30 (just intolerable) as being a “practical range … with most 

lighting systems producing values in that range”. One might argue that all values above 30 

should be considered intolerable glare. However, it is important to note that even though the 

UGR ratings of 45 and 65 both exceed the upper limit of 30 as specified by the CIE, any two 
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installations with these UGR values do not create the same amount of intolerable glare. The 

UGR small extension values in this research (0.4-55.1) preserved the relative differences 

between the ratings of the lighting conditions, instead of equating the values larger than 30. As 

the CIE puts it – “the scale is reproduced here, not with the purpose of specifying glare 

restriction limits, but merely to offer, for glare evaluation purposes, insight in the practical 

meaning of differences in glare ratings” (CIE 112-1994).  

Also, note that the UGR and its extensions were developed for interior lighting systems. 

A larger range of the UGR small source extension values in this study (0.4-55.1) when compared 

to the CIE’s practical range (10-30) might be explained by the difference between the luminance 

ranges typically encountered in outdoor and indoor spaces. Outdoor nighttime environments with 

high luminance light sources have a larger luminance range than interior environments. 

According to the IESNA Lighting Handbook (DiLaura et al. 2011), the representative indoor 

luminances range from 0.3 to 3,100,000 cd/m2 (from emergency lighting to tungsten lamp 

filament luminance respectively). Outdoor conditions, however, range from 0.001 cd/m2 during a 

moonless clear night up to 19,000,000 cd/m2 (Tyukhova and Waters 2014), if glare sources such 

as LEDs are present in the field of view. One can think about the difference in ranges 

encountered in outdoors versus indoors as the “range effect” (Lulla and Bennett 1981) - subjects 

adjust judgements based on the range presented. This effect suggests that there is no cut-off 

value of discomfort glare. An experimenter has to choose a range that is representative of the 

conditions experienced in a particular context. 

Another point to remember is that subjective scales are arbitrary. During the training in 

the current study, subjects were shown the worst stimulus from the 36 lighting conditions and 

were told that this is “intolerable” glare and most people would rate it as 6 (Appendix P). This 
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procedure served to anchor the subject’s response range to the stimulus range - Tiller and Rea 

recommend to define the meanings of the upper and lower limits of a rating scale to observers 

(1992). When metrics were developed, “intolerable” glare could have been defined in different 

ways. For example, in this study the average subjective ratings of conditions # 4, 13, 19, 24, 26, 

27, and 32 are all close to the mid-point of the scale – “between noticeable and disagreeable” 

(Table 4-7), specifically, they are 3.4; 3; 2.9; 3.7; 3.6; 3.1; and 3.3. These ratings correspond to 

the UGR small source extension calculations of 30; 30.3; 27.9; 32; 31.4; 27.2; and 28.8 

respectively – all close to the scale’s maximum. Therefore, the meaning of “just intolerable” in 

the UGR for interior assessments might be different from the definition of “intolerable” glare 

subjects used in this study. 

The combination of Bullough’s et al. 2008 metric for sources smaller than 0.3˚ and 

Bullough’s et al.  2011 modification for sources larger than 0.3˚ was the second best metric to 

predict discomfort glare. It also showed a significantly better agreement with the subjective 

responses in this study than the predictions made by the motor vehicle lighting metric (metric 2), 

which agrees with the literature (Sammarco et al. 2011).  

The correlation of predictions by the motor vehicle lighting metric (metric 2) and the 

subjective ratings in this study (r = 0.792) is similar to the correlations that Porter and colleagues 

found when they studied discomfort glare experienced by nighttime drivers (2005). Observers in 

their study drove on a test road that mimicked a real environment and then rated the experienced 

discomfort. The researchers used two variations of glare calculation: (1) through the maximum 

illuminance at the eyes experienced at some point on the test road, and (2) through the 

illuminance at the eyes that the observers experienced last on the test road. The correlation 

between subjective ratings and the calculations by metric 2 based on the maximum illuminance 
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at the eyes was r = 0.74, and based on the illuminance experienced right before giving the rating 

r = 0.78.  

The lowest correlation (r = 0.405) acquired in this study was between the outdoor sports 

and area lighting (metric 1) predictions and subjective responses, which might be explained by 

the limitations of metric 1 outlined in the CIE technical document (CIE 112-1994). The validity 

of the system is restricted to the viewing directions below the eye level. Moreover, the CIE 1994 

glare formula does not differentiate between the two types of glare – discomfort and disability 

glare, but rather assesses the “general” glare through the veiling luminance components (see 

equation (2-7)). Veiling luminances are typically used for the assessment of disability glare. 

Therefore, it is not clear that using this CIE metric allows a valid estimation of discomfort glare. 

5.2.3 Pupil Data Discussion 

There is some controversy on the role of the pupil in discomfort glare estimation. Some 

studies suggests that the pupil’s size is not related to discomfort glare perceptions (e.g. 

Hopkinson 1956), while others showed significant correlations (e.g. Stringham et al. 2011, Lin et 

al. 2015).  

The pupil data analysis in this study suggests that the RPS is correlated with discomfort 

glare to some extent (r = 0.659, p < 0.0001). On the one hand, this contradicts previous result 

that showed that the pupil’s reaction is not determined by the degree of glare, but rather by the 

level of illumination produced at the eyes by both the glare source and the background 

(Hopkinson 1956). On the other hand, the results of this current research match the results 

reported in other research papers (Lin et al. 2015, Stringham et al. 2011).  

The contradictory results by Hopkinson indicated that in a no-glare state the pupil size 

decreased due to the background luminance that produced a higher level of illumination at the 



www.manaraa.com

182 
 

eyes. The difference between his results and the results in this study might be due to the fact that 

Hopkinson used only two subjects - the conclusions may be erroneously attributed to the studied 

phenomena instead of the sampling error. Also, Hopkinson used the absolute pupil diameter, 

which did not account for existing individual differences between the subjects such as age. This 

current research showed a significant negative correlation between the age and the absolute pupil 

diameter averaged across conditions. This trend corresponds to the literature indicating that 

under comparable conditions, older people tend to have smaller pupils than younger people 

(DiLaura et al. 2011). In addition, Hopkinson used a different methodology of slowly raising the 

stimulus until it met the specified criterion (e.g. “just perceptible”), allowed for adaptation and 

then made the final judgments. The pupil image was taken in the adapted state.  

The results of this current research match the results reported in other research papers 

(Lin et al. 2015, Stringham et al. 2011). Stringham and colleagues found that greater visual 

discomfort is associated with greater iris constriction (r = -0.429, p = 0.037). Lin and colleagues 

also found that the relative pupil size correlates well with the De Boer rating, (r = -0.61, p < 

0.001), indicating that when a glare source provides more discomfort, the pupil decreases in size 

compared to a no-glare state. Note that the correlation sign is negative, because the authors used 

the De Boer rating (smaller values mean more glare).  

The ANOVA analysis performed on the pupil data demonstrated that all four variables 

(the glare source luminance, its position, its solid angle, and the background luminance) showed 

significant main effects (for the full summary of results refer to Table 4-2). The significant 

effects of the average glare source luminance and the viewing angle correspond to the results 

found by Zhu and colleagues (2013), who tested two of the four variables used in the current 

research.  
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In the current research, the luminance of the glare source, its position, and its solid angle 

showed significant effects in the expected direction, meaning that the pupil constricts more (i.e. 

larger RPS) in response to more light reaching the retina (Boyce 2014). These three significant 

effects correspond to one of the two normal pupil principal reactions - the direct light reflex (Rea 

2013). The more light enters the pupil, the greater the constriction (Rea 2013, Rosenbaum 1991).  

This research showed that the background luminance also has a significant effect on the 

relative pupil size, such that when the background luminance decreases, the RPS increases. This 

means that the lower the background luminance, the more the pupil constricts during the glare 

presentation when compared to its initial state. At the same time, as shown in this research, the 

lower the background luminance the higher the discomfort glare sensation. One needs to explore 

how, on average, the pupil reacts to the background luminance (the main effect) by examining 

the adaptation state before and after the glare occurred. The discussion on this issue is provided 

below. 

Let the time before the glare source was presented be denoted as t1, and the time after the 

glare source was presented as t2. Figure 5-1 shows the average ambient illuminance at the eyes at 

t1 graphed for the three levels of the background luminance. The average ambient illuminance is 

the illuminance from the background light source reflected off of the background and measured 

at the eyes. The darker the background, the smaller the ambient illuminance at the eyes. As was 

shown in section 4.2.1, the darker the background, the larger the absolute pupil diameter – for a 

background luminance of 0.03 cd/m2 the average pupil diameter was 5.4 mm; for 0.3 cd/m2 it 

was 4.8 mm; and for 1 cd/m2 it was 4.3 mm. 
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Figure 5-1. Average ambient illuminance at the eyes at three background luminance levels 

tested in this study (before the glare source was introduced) 

When the glare source is shown in the field of view (at t2), the illuminance at the eyes 

increased by the same amount for all three background luminances – by the illuminance caused 

by the glare source.  Therefore, the absolute change in illuminance is the same for all three 

background levels. Figure 5-2 shows the total illuminance at the eyes after the subject is exposed 

to glare. The total illuminance at the eyes consists of the illuminance from the background source 

(ambient) and the illuminance from the glare source (both the direct and indirect components). 

For the highest background luminance used in this study (1 cd/m2), the total illuminance at the 

eyes was the highest. Contrary to the expectation that the more light enters the pupil, the greater 

the constriction (Rea 2013, Rosenbaum 1991), the calculations of illuminances from the 

measurements in this study do not explain why pupils constricted less (smaller RPS) for the 

higher background luminance (refer to Table 4-10 for the main effect of the background 

luminance).  
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Figure 5-2. Average total illuminance at the eyes when the subject is exposed to glare  

However, if one examines the relative change in illuminance at the eyes, the observed 

trend becomes clear. The relative change in illuminance is the absolute change in the illuminance 

at the eyes divided by the initial illuminance at the eyes (equations (5-1), (5-2)). 
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(5-1) 

Where 

ΔErelative is the relative change in illuminance at the eyes; 

Et1 is the illuminance at the eyes at time t1 (before the glare was presented), lx; 

Et2 is the illuminance at the eyes at time t2 (after the glare was presented), lx. 

Equation (5-1) can be further rewritten by substituting for the illuminance components 

Et1 and Et2 as follows: 
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Where 
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ΔErelative is the relative change in illuminance at the eyes; 

Eamb is the ambient illuminance at the eyes, lx; 

Etotal is the total illuminance at the eyes, lx; 

Els is the illuminance at the eyes caused by the glare source, lx. 

This relative change compares the change in illuminance from the no-glare state (t1) to 

the glare condition (t2) with the no-glare state being the baseline, which is the state with low 

background luminances (0.03; 0.3; and 1 cd/m2). Essentially, the relative change takes into 

account the initial adaptation of the pupil to the low background luminance. Therefore, when a 

glare source was shown in the field of view with the lowest background luminance used in this 

study (0.03 cd/m2), the relative change in illuminance was the highest – a value of 171 (Figure 

5-3). In this case, the pupil constricted the most when compared to the initial dark-adapted state.  

 

Figure 5-3. Average relative pupil size and relative change in illuminance for the three 

background luminances used in this study 
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The relative change in illuminance takes into account the initial adaptation by including 

the illuminance at the eyes before the glare source was shown to the subject in the denominator 

of equation (5-1) and the adaptation at t2, which includes both the glare source and the 

background. In his initial proposal for the UGR formula (1979), Einhorn included the direct 

component of the glare source illuminance at the eyes (Ed) that accounts for the higher 

adaptation level due to the presence of the glare source. Einhorn mentioned that it is debatable to 

define adaptation in the glare condition through the indirect illuminance Ei at the eyes only (i.e. 

background luminance), since the direct illuminance at the eyes (Ed) also contributes to 

adaptation (1998).  Einhorn mentioned that taking both illuminance components into account 

also avoids an anomaly of having infinitely large glare ratings in dark interiors (1979).  

Figure 5-4 shows the average subjective responses to discomfort glare and the relative 

pupil size for the three levels of the background luminance examined in this research. The trends 

of the two curves demonstrate similar patterns. It means that when the background luminance is 

lower, the discomfort glare ratings are higher, and the pupil constricts more during the glare 

presentation compared to its initial state. According to Fugate, discomfort and pain are located 

on a continuum; discomfort is a mild degree of pain (1957). Any uncomfortable stimulus 

becomes painful if its intensity is sufficiently increased. Rea writes in her book that pain in the 

eye or in extraocular tissue is accompanied by contracted pupils (2013). This research supports 

Rea’s statement by showing that the higher the discomfort glare, the larger the pupil constriction 

when compared to the initial no-glare state (Figure 5-4).    
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Figure 5-4. Average subjective rating and average relative pupil size for three background 

luminances used in this study 

The difficulty in establishing a reliable and simple relationship between the pupil 

diameter and discomfort glare might be due to multiple physiological and psychological 

processes that govern pupil’s size as well as its limited diameter range. After all, the pupil’s size 

is also influenced by factors other than light, which include the age of the observer, the distance 

from the eyes to the object in focus, and emotions such as fear and excitement (Boyce 2014). 

The pupil size changes with accommodation; when the eye is focused on a near point, the pupil 

constricts (Rea 2013). Pupils also exhibit one of the associated reflexes - the psychical reflex 

(Rea 2013). This reflex occurs when patients show extreme emotion or fear, in which case they 

have dilated pupils. Conditions of increased attention or cognitive load can also dilate pupils 

(Sirois and Brisson 2014, Rosenbaum 1991). Drugs such as atropine can dilate the pupil as well, 

and drugs such as serine can constrict it (Rea 2013). In one study, a blind subject who lacked 

functional rods and cones, showed a pupil-constriction response, which peaked at a wavelength 
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of 476 nm (Zaidi et al. 2007). The subject possessed pupillary constriction that was driven by 

short-wavelength photosensitive retinal ganglion cells (pRGC), which are responsible for 

nonvisual circadian and neuroendocrine responses to light. Watson and Yellott believe that the 

pupil is controlled by a complex mixture of rod, cone, and intrinsically pRGC sensitivities 

(2012).  

Additionally, the pupil diameter’s range is limited (the range for young adults is 2 - 8 mm 

(Boyce 2014)). If the adaptation luminance of 3,100 cd/m2 is increased to approximately 

1,000,000 cd/m2, the light-adapted pupil of a young adult decreases by only 0.1 mm (DiLaura et 

al. 2011). This might indicate that the pupil has a limited reaction to the stimuli past a certain 

threshold. Therefore, other reactions in the body - looking away from the glare source, blinking 

more frequently, or closing the eyes to protect the vision - might indicate an uncomfortable state. 

Future research needs to address the pupil’s reaction as part of this bigger picture. 

5.2.4 EMG Data Discussion 

The EMG data were not analyzed due to several issues with the data (Appendix W). The 

initial idea was to integrate the EMG recordings into the glare software, such that these data 

could be synchronized and compared (through the calculated MAC indices) with the subjective 

and pupil data.  

Ideally, actual events such as human reactions to glare flashes would be clearly visible in 

the EMG recordings, which would allow one to synchronize all signals (in the eye tracking data 

one can identify different events such as flashes). The lack of third party support of the Focus 

EMG device made the integration of the EMG into the glare software not possible due to 

technical constraints. A more detailed knowledge of the EMG equipment and support by the 
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manufacturer could confirm the correct application of all settings of the device.  This would also 

clarify how to interpret the device’s time stamps for the data it produced. 

A full-scale pilot study would also help to identify issues with data collection at an earlier 

stage. For example, using a different data structure for storing data transmitted from the device to 

the host computer would have eliminated the missing data problem caused by the ‘overwrite’ 

issue. Given the time constraints, no further advanced analysis was done with the data. 

5.2.5 Overall Discussion  

One of the goals of this research was to simultaneously examine discomfort glare from 

multiple perspectives by studying the effects of a glare stimulus on the subjective, the pupil, and 

the facial muscle responses. Comparing results from multiple datasets could give a deeper 

understanding which mechanisms are involved in a response to the glare stimuli and to what 

extent.  

Mechanisms such as blinking, frowning, apparent change in facial muscles, and others 

might be present when glare is shown to the subject (Hopkinson 1956, Lin et al. 2015). Stone 

believes that a response to discomfort glare is organized in the trigeminal nucleus (or nerve) 

(2009). The trigeminal nucleus (the fifth cranial nerve) is a nerve responsible for sensation in the 

face; it supplies sensory fibers to the eye, scalp, and orbital area (Fugate 1957). As an example, 

trigeminal nerve is involved in the corneal (blink) reflex, which acts as a protective mechanism 

against approaching objects. The sensory path detects the stimulus and initiates a motor response 

via the facial nerve (Rea 2014, Monkhouse 2005), which prompts the orbicularis oculi - the 

muscle responsible for closing the eyes. Blinking might also be involved in a response to a glare 

stimulus in a similar way. 
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As was mentioned previously (section 5.2.3), the relationship between pupil size and 

discomfort glare is not straightforward, because many factors influence the pupil size. However, 

this research found a significant correlation between the relative pupil size and discomfort glare. 

Therefore, the pupil’s response might be an indicator of discomfort to some extent; its response 

should be interpreted together with the other mechanisms that might contribute to the sensation 

of discomfort. The ocular system might be examined together with the pupil response as being a 

small part of the system that responds to discomfort glare.  

Additionally, a possible analogy can be made between the pupil’s role in response to an 

uncomfortable stimulus and the pupil’s role in the adaptation process. Among the three 

mechanisms that are known to take place during the adaptation process – the change of the pupil 

size, synaptic interactions, and pigment bleaching - “the change in pupil size in response to 

retinal illuminance can only account for a 1.2 log unit change in sensitivity to light” (DiLaura et 

al. 2011). This might mean that after a certain threshold is reached, the pupil’s response is 

limited, and the role of other mechanisms becomes more apparent in the adaption. It is possible 

that similar processes happen during the exposure to glare.  

Discomfort might occur due to a lack of ability to adapt to glare. Howarth and others 

assumed that discomfort can arise from light adaptation regulation mechanism (1993). If a part 

of the visual field is excessively bright, stress signals caused by the light overload could reach 

cortical pain centers. Since the retina has no pain receptors, other ocular structures have to be 

explored in order to find what is causing discomfort or pain (Stone 2009). For example, the 

cornea has no blood vessels, but is richly endowed with pain receptors to help protect the eyes 

(DiLaura et al. 2011). Also, the sclera, the iris, the choroid, and the ciliary body are supplied 

with sensory fibers of pain (Fugate 1957). Fugate hypothesized that discomfort is just a mild 
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degree of pain. An uncomfortable sensation might be acting as protective mechanism preventing 

possible light damage from a glare source (Howarth et al. 1993).  

Stone proposed that the neural processing tries to optimize the visual image in terms of 

clarity when glare or a high luminance contrast is present (2009). He assumes that the visual 

cortex system recruits the iris, lens, extraocular and facial muscles to resolve this strain put on 

the visual system. A frowning response that recruits the facial muscles, for example, results from 

the demand to reduce the luminance contrast (Stone 2009). To obtain a clear image in low light 

level situations the pupil dilates, and in high light levels, it constricts (Rea 2013). Stone argues 

that “a self-correcting ocular system under strain is the stimulus for the discomfort glare 

response” (2009).  

One might argue that looking at multiple reactions would only complicate the problem. 

However, the author feels that if breaking down the problem into a simple relationship between 

variables cannot explain the phenomenon, one needs to examine a bigger picture. After all, as 

Boyce mentions, the visual system relies on the eye for image formation and the brain for image 

processing, rather than the eyes working in isolation (2014). 
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5.3 Future Research  

Knowledge is of no value unless you put it into practice. 
-Anton Chekhov 

 

As was outlined in the introduction, in current lighting practices discomfort glare is rarely 

calculated, while it persists as an issue. This research investigated the influence of four variables 

on discomfort glare perception from small, high luminance light sources in outdoor nighttime 

environments. Among the four applicable discomfort glare metrics that were tested in this study, 

the UGR small source extension correlated best with human subject responses. The next step is 

to examine how to improve the UGR small source extension metric to achieve higher 

predictability of glare in outdoor nighttime environments. To encourage the use of discomfort 

glare metrics, after improving the predictability, the next necessary step is to incorporate this best 

performing metric into lighting software toolboxes. Modern technologies such as high dynamic 

range imaging (HDRI) can be used to measure bright LEDs and provide luminances of entire 

photographed scenes (Tyukhova and Waters 2014). Using HDRI technology for luminance data 

acquisition and software for glare analysis can potentially provide an excellent tool for 

discomfort glare measurements and calculations on site, and therefore, improve prediction and 

minimization of glare. Such analysis tools will allow researchers to investigate glare in real 

environments and designers to start using glare analysis in their every day practices.  

Testing discomfort glare in real environments with the help of HDRI technology and 

lighting software with glare analysis capabilities might also provide researchers with a great tool 

to investigate glare in the context of a specific application. In the book “Human Factors in 

Lighting”, Boyce discussed the importance of the context in which glare is assessed (2014). 
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Glare is task dependent, meaning that ratings depend on whether the participant is reading, 

writing, or doing something else.  

The UGR small source extension and Bullough’s et al. combination of two metrics (2008, 

2011) were the metrics that correlated best with human subjects’ responses in this study (the 

UGR small source extension being significantly better). The combination of two metrics by 

Bullough et al. was used, because the authors made a distinction for sources below and above the 

visual angle threshold of 0.3°. For sources larger than 0.3°, in addition to illuminance, luminance 

is included in the equation as a significant predictor of discomfort glare. Since in the current 

research both source sizes were used, a combination of the two metrics had to be used to predict 

discomfort glare. Interestingly enough, both sets of metrics – the UGR and the UGR small 

source extension on the one hand, and Bullough’s et al. 2008 and 2011 models on the other hand 

– indicate a threshold in the source size, after which some parameters of the metric’s equation 

change (in case of the UGR metric, a threshold area is 0.005 m2). One might wonder if there is a 

relation between these two distinctions in source size in both metrics. Therefore, another 

potential area for research is to define ‘small’ sources better.  

Frequently, observers have multiple light sources in their field of view. For this reason, to 

further extend the applicability of this research to practical problems, research with multiple 

sources such as banks of light sources on a pole or a source with a grid of LEDs in one luminaire 

should be conducted. This research has shown that the constriction of the pupil can be explained 

if one takes into account adaptation by comparing the state before the glare was shown with the 

state after glare was introduced. One intriguing question is how adaptation changes, when 

several light sources are present in the field of view simultaneously and how discomfort glare 

perception would be affected in this case.  
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Relative pupil size correlated with discomfort glare in this study to some extent. 

However, as it was described in section 5.2.3, it is not easy to establish a simple relationship 

between pupil diameter and discomfort glare due to its physiological limit and other factors that 

influence the pupil’s size. Future research on understanding to what extent the pupil reacts to 

discomfort glare along with other mechanisms such as extraocular muscle activity and eye 

movement might give a deeper insight into understanding the reactions that are involved in 

responding to discomfort glare. It might be beneficial to conduct interdisciplinary research 

investigating the combination of responses to glare with a team consisting of lighting specialists, 

ophthalmologists, visual scientists, neurologists, and potentially others. 

Most certainly, understanding the true cause of discomfort and, therefore, having an 

objective measure(s) of discomfort glare, is highly desired. As has been described in section 

2.4.2, many researchers have been looking at various measures of the physiological origin in the 

recent years. Yet no cause of discomfort has been established. Further investigation into this 

issue is warranted.  
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Appendix A - HDRIs of background  
 

 
Figure A1. HDRI of the background luminance at level 0.03 cd/m2  

 
 
Figure A2. HDRI of the background luminance at level 0.03 cd/m2 (left side of the field of 
view is highlighted, histogram shows data of the highlighted area) 
 



www.manaraa.com

205 
 

 
Figure A3. HDRI of the background luminance at level 0.03 cd/m2 (right side of the field of 
view is highlighted, histogram shows data of the highlighted area) 
 

 
 
Figure A4. HDRI of the background luminance at level 0.3 cd/m2  
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Figure A5. HDRI of the background luminance at level 0.3 cd/m2 (left side of the field of 
view is highlighted, histogram shows data of the highlighted area) 
 

 
 
Figure A6. HDRI of the background luminance at level 0.3 cd/m2 (right side of the field of 
view is highlighted, histogram shows data of the highlighted area) 
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Figure A7. HDRI of the background luminance at level 1 cd/m2  
 

 
 
Figure A8. HDRI of the background luminance at level 1 cd/m2 (left side of the field of view 
is highlighted, histogram shows data of the highlighted area) 
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Figure A9. HDRI of the background luminance at level 1 cd/m2 (right side of the field of 
view is highlighted, histogram shows data of the highlighted area) 
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Appendix B – Minimizing the spill light influence on the background 
luminance 
 
Measured on 4/11/2015 with LS-110; 
Background luminance 0.03 cd/m2 (lowest level, worst condition); 
 

Number of the point (refer 
to Figure 3-43) 

Background luminance 
without the glare source, 

cd/m2 

Background luminance 
with the glare source 

(750,000 cd/m2,ω=10-4 sr, 
0°), cd/m2 

2 0.031 0.036 
4 0.04 0.041 
5 0.041 0.043 
6 0.043 0.043 
8 0.031 0.033 
9 0.037 0.038 
10 0.051 0.053 
11 0.034 0.035 

Number of the point Background luminance 
without the glare source, 

cd/m2 

Background luminance 
with the glare source 

(750,000 cd/m2,ω=10-4 sr, 
10°), cd/m2 

4 0.042 0.039 
5 0.042 0.041 
6 0.044 0.041 
8 0.033 0.031 
9 0.037 0.037 
10 0.051 0.047 
11 0.035 0.033 
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Appendix C – Main settings of the devices for the 36 lighting conditions  
 
The fixation point is a glare source at 0˚, set at 2 mA, 4000 in the aperture units. 
  

# LS @ 0º 
(fix, flash) 

LS @ 10º Lbackg,  

scale (1-254) 
Iris @ 0º, 
position 

Iris @ 10º, 
position 

1 Fix, on 12mA Off  1 5, then 2 1 
2 Fix, on 12mA Off 90 5, then 2 1 
3 Fix, on 12mA Off 220 5, then 2 1 
4 Fix, on 12mA Off 1 5, then 3 1 
5 Fix, on 12mA Off 90 5, then 3 1 
6 Fix, on 12mA Off  220 5, then 3 1 
7 Fix On, 16 mA 1 5 2 
8 Fix On, 16 mA 90 5 2 

9 (min) Fix On, 16 mA 220 5 2 
10 Fix On, 16 mA 1 5 3 
11 Fix On, 16 mA 90 5 3 
12 Fix On, 16 mA 220 5 3 

      
13 Fix, on 110 mA Off  1 5, then 2 1 
14 Fix, on 110 mA Off 90 5, then 2 1 
15 Fix, on 110 mA Off 220 5, then 2 1 
16 Fix, on 110 mA Off 1 5, then 3 1 
17 Fix, on 110 mA Off 90 5, then 3 1 
18 Fix, on 110 mA Off  220 5, then 3 1 
19  On, 115 mA 1 5 2 
20 Fix On, 115 mA 90 5 2 
21 Fix On, 115 mA 220 5 2 
22 Fix On, 115 mA 1 5 3 
23 Fix On, 115 mA 90 5 3 
24 Fix On, 115 mA 220 5 3 

      
25 Fix, on 410 mA Off  1 5, then 2 1 
26 Fix, on 410 mA Off 90 5, then 2 1 
27 Fix, on 410 mA Off 220 5, then 2 1 

28 (max) Fix, on 410 mA Off 1 5, then 3 1 
29 Fix, on 410 mA Off 90 5, then 3 1 
30 Fix, on 410 mA Off  220 5, then 3 1 
31 Fix On, 420 mA 1 5 2 
32 Fix On, 420 mA 90 5 2 
33 Fix On, 420 mA 220 5 2 
34 Fix On, 420 mA 1 5 3 
35 Fix On, 420 mA 90 5 3 
36 Fix On, 420 mA 220 5 3 
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Appendix D - Serial Ports  
 

Controllable Device Serial Port - USB 
Glare source at position 0˚ (upper power 

supply) 
COM 17 

Glare source at position 10˚ (lower power 
supply) 

COM 11 

Background light source COM 8 
Aperture at position 0˚ COM 18 
Aperture at position 10˚ COM 4 

Illuminance meter COM 7 
 

Appendix E - Parameters file 
 
<?xml version="1.0" encoding="utf-8" ?> 
<!--Glare Study Test Initialization Parameters--> 
<Parameters> 
    <Source0> 
      <voltsOn>72000</voltsOn> 
      <voltsOff>55000</voltsOff> 
      <current>0</current> 
      <output>Off</output> 
    </Source0> 
    <Source10> 
      <voltsOn>72000</voltsOn> 
      <voltsOff>55000</voltsOff> 
      <current>0</current> 
      <output>Off</output> 
    </Source10> 
    <Fixation> 
      <mAmps>2</mAmps> 
    </Fixation> 
    <backlight> 
      <level>220</level> 
    </backlight> 
    <Aperture0> 
      <initial>1</initial> 
      <position1>0</position1> 
      <position2>14000</position2> 
      <position3>41000</position3> 
      <position4>125000</position4> 
      <position5>4000</position5> 
      </Aperture0> 
    <Aperture10> 
      <initial>1</initial> 
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      <position1>0</position1> 
      <position2>18000</position2> 
      <position3>58000</position3> 
      <position4>170000</position4> 
      <position5>95000</position5> 
    </Aperture10> 
</Parameters>   
 

Appendix F - Calibration tables 
 
Table F1. Apertures  

Position of the 
slider (manual 

mode) 

Name of the 
position 

Aperture 
diameter, mm 
(based on 1 m 

viewing 
distance) 

Aperture at 0˚ 
(larger) 

Aperture at 10˚ 
(smaller) 

1 Closed 0 0 0 
2 10-5 sr 3.6 14,000 18,000 
3 10-4 sr 11.3 41,000 58,000 
4 10-3 sr 35.7 125,000 170,000 
5 Fixation point 

/3*10-4 sr 
 4,000 95,000 

 
Table F2. Light sources 

Glare sources Current, mA Level, cd/m2 

 
At the 0˚position 12  20,000 

 110 205,000 
 410 750,000 

At the 10˚position 16  20,000 
 115  205,000 
 420 750,000 

Background source 0-254 steps  
 0 Switched off 
 1 0.03  
 90 0.3 
 220 1 
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Appendix G - Example of a part of the pre-programmed Excel spreadsheet  
Only 10 lighting conditions for one subject (ID 50) are shown due to the limited space. For 
display purposes the table was split into four parts. 
 

Column meanings (Table G. Part 1 from left 
to right) 
Date of recording 
Time stamp was taken at the end of the 
condition  
Test index order in which a lighting condition 
was shown 
Scenario number is the number of the lighting 
condition 
Time stamp off was taken when only the 
background source was on 
Off - is the illuminance reflected off of the 
background (ambient) 
Time stamp flash 1 was taken during flash 1 
Power Supply glare source at 0° voltage 
Power Supply glare source at 0° current 
Power Supply glare source at 0° power 
Power Supply glare source at 10° voltage 
Power Supply glare source at 10° current 
Power Supply glare source at 10° power 
 
Column meanings (Table G. Part 2 from left 
to right) 
Illuminance during flash 1  
Time stamp was taken during flash 2 
Power Supply glare source at 0° voltage 
Power Supply glare source at 0° current 
Power Supply glare source at 0° power 
Power Supply glare source at 10° voltage 
Power Supply glare source at 10° current 
Power Supply glare source at 10° power 
Illuminance during flash 2  
Time stamp was taken during flash 3 
Power Supply glare source at 0° voltage 

Power Supply glare source at 0° current 
Power Supply glare source at 0° power 
Power Supply glare source at 10° voltage 
 
Column meanings (Table G. Part 3 from left 
to right) 
Power Supply glare source at 10° current 
Power Supply glare source at 10° power 
Illuminance during flash 3 
Electrodes for the EMG (impedance test)  
Does flash 1 meet the expected range of 
illuminance? 
Does flash 2 meet the expected range of 
illuminance? 
Does flash 3 meet the expected range of 
illuminance? 
Does illuminance when glare source is off meet 
the expected range of illuminance? 
Baseline illuminance for flash 1 
Baseline illuminance for flash 2 
Baseline illuminance for flash 3 
Baseline illuminance for ambient illuminance 
Allowed error ± 10% 
 
Column meanings (Table G. Part 4 from left 
to right) 
Illuminance at the lower end of the baseline 
range for flashes (-10%) 
Illuminance at the higher end of the baseline 
range for flashes (+10%) 
Illuminance at the lower end of the baseline 
range for ambient illuminance (-10%) 
Illuminance at the higher end of the baseline 
range for ambient illuminance (+10%) 
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Table G. Part 1 
Date Time Test 

index 
Scenario 
number 

Subjective 
assessment 

(scale) 

Time 
stamp 

off 

Off, 
lx 

Time 
stamp 
Flash 1 

PS0, 
Voltage, 

mV 

PS0, 
Current, 

mA 

PS0, 
Power, 

*100 = W 

PS10, 
Voltage, 

mV 

PS10, 
Current, 

mA 

PS10, 
Power, 
*100 = 

W 

5/13/2015 13:51:30 14 1 0 51:00.4 0.1 51:18.3 61900 10 61 54900 0 0 

5/13/2015 14:05:25 26 2 0 04:54.9 1 05:13.2 61900 10 61 54900 0 0 

5/13/2015 14:15:52 35 3 0 15:21.9 3.4 15:40.1 61900 10 61 54900 0 0 

5/13/2015 14:04:17 25 4 4 03:46.6 0.1 04:04.9 61900 10 61 54900 0 0 

5/13/2015 14:13:34 33 5 1 13:03.8 1 13:22.2 61900 10 61 54900 0 0 

5/13/2015 14:01:57 23 6 0 01:26.8 3.3 01:45.7 61900 10 61 54900 0 0 

5/13/2015 14:11:17 31 7 0 10:46.4 0.1 11:04.7 60100 0 0 62000 20 124 

5/13/2015 14:00:48 22 8 0 00:17.8 1 00:36.4 60100 0 0 62000 20 124 

5/13/2015 14:06:34 27 9 0 06:03.5 3.3 06:21.8 60100 0 0 62000 20 124 

5/13/2015 13:41:51 6 10 1 41:20.3 0.1 41:38.9 60100 0 0 62000 20 124 

 
Table G. Part 2 

Flash 
1, lx 

Time 
stamp 
Flash 2 

PS0, 
Voltage, 

mV 

PS0, 
Current, 

mA 

PS0, 
Power, 
*100 = 

W 

PS10, 
Voltage, 

mV 

PS10, 
Current, 

mA 

PS10, 
Power,*100 

= W 

Flash 
2, lx 

Time 
stamp 
Flash 3 

PS0, 
Voltage, 

mV 

PS0, 
Current, 

mA 

PS0, 
Power, 
*100 = 

W 

PS10, 
Voltage, 

mV 

0.2 51:20.7 61900 10 61 54900 0 0 0.2 51:23.1 61900 10 61 54900 

1.1 05:15.6 61900 10 61 54900 0 0 1.1 05:18.5 61900 10 61 54900 

3.5 15:42.5 61900 10 61 54900 0 0 3.5 15:45.0 61900 10 61 54900 

1.4 04:07.3 61900 10 61 54900 0 0 1.4 04:09.7 61900 10 61 54900 

2.3 13:24.5 61900 10 61 54900 0 0 2.3 13:26.9 61900 10 61 54900 

4.6 01:47.5 61900 10 61 54900 0 0 4.6 01:49.9 61900 10 61 54900 

0.2 11:07.1 60100 0 0 62000 20 124 0.2 11:09.6 60100 0 0 62000 

1.1 00:38.5 60200 0 0 62000 20 124 1.1 00:40.9 60200 0 0 62000 

3.5 06:24.2 60100 0 0 62000 20 124 3.5 06:26.7 60100 0 0 62000 

1.5 41:41.3 60100 0 0 62000 20 124 1.5 41:43.8 60100 0 0 62000 
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Table G. Part 3 

PS10, 
Current, 

mA 

PS10, 
Power, 

/*100 = W 

Flash 3, 
lx 

EMG (good/ 
bad) 

Flash 1? Flash 2? Flash 3? Off? Flash 1 Flash 2 Flash 3 Off Flashes 
± 10% 

0 0 0.2 Good EMG Yes Yes Yes Yes 0.2 0.2 0.2 0.1 0.02 

0 0 1.1 Good EMG Yes Yes Yes Yes 1.1 1.1 1.1 0.9 0.11 

0 0 3.5 Good EMG Yes Yes Yes Yes 3.4 3.4 3.4 3.3 0.34 

0 0 1.4 Good EMG No No No Yes 1.5 1.6 1.6 0.1 0.16 

0 0 2.2 Good EMG Yes Yes Yes Yes 2.4 2.4 2.4 1 0.24 

0 0 4.6 Good EMG Yes Yes Yes Yes 4.7 4.8 4.8 3.3 0.48 

20 124 0.2 Good EMG Yes Yes Yes Yes 0.2 0.2 0.2 0.1 0.02 

20 124 1.1 Good EMG Yes Yes Yes Yes 1.1 1.1 1.1 1 0.11 

20 124 3.5 Good EMG Yes Yes Yes Yes 3.4 3.4 3.4 3.3 0.34 

20 124 1.6 Good EMG Yes Yes No Yes 1.4 1.4 1.4 0.1 0.14 
 

Table G. Part 4 

Expected range for 
the flashes 

Expected range, off 
(no glare source) 

-10% 10% -10% 10% 

0.2 0.2 0.09 0.11 

1.0 1.2 0.79 1.01 

3.1 3.7 2.90 3.70 

1.4 1.7 0.09 0.11 

2.2 2.6 0.88 1.12 

4.3 5.2 2.90 3.70 

0.2 0.2 0.09 0.11 

1.0 1.2 0.88 1.12 

3.1 3.7 2.90 3.70 

1.3 1.5 0.09 0.11 
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Appendix H - Part of the pupil data file  
 
Below is a part of the pupil data file. First, a summary for all runs (conditions) for one subject is 
provided and, second, data for one second of one lighting condition are shown in Table H1. 
 
ISCAN Tab-Delimited ASCII Data File 
Version 4.00 
ISCAN Data Recording 
Runs Recorded:  36 
Samps Recorded: 25920 
 
RUN INFORMATION TABLE 
Run # Date      Start Time Samples Samps/Sec Run Secs Image File  
 Description 
   1  2015/04/24  08:27:18     720      60      12.00 default.igr  New Data Run 
   2  2015/04/24  08:28:26     720      60      12.00 default.igr  New Data Run 
   3  2015/04/24  08:29:36     720      60      12.00 default.igr  New Data Run 
   4  2015/04/24  08:30:46     720      60      12.00 default.igr  New Data Run 
   5  2015/04/24  08:31:55     720      60      12.00 default.igr  New Data Run 
   6  2015/04/24  08:33:03     720      60      12.00 default.igr  New Data Run 
   7  2015/04/24  08:34:14     720      60      12.00 default.igr  New Data Run 
   8  2015/04/24  08:35:24     720      60      12.00 default.igr  New Data Run 
   9  2015/04/24  08:36:35     720      60      12.00 default.igr  New Data Run 
  10  2015/04/24  08:37:45     720      60      12.00 default.igr  New Data Run 
  11  2015/04/24  08:38:53     720      60      12.00 default.igr  New Data Run 
  12  2015/04/24  08:40:01     720      60      12.00 default.igr  New Data Run 
  13  2015/04/24  08:41:13     720      60      12.00 default.igr  New Data Run 
  14  2015/04/24  08:42:21     720      60      12.00 default.igr  New Data Run 
  15  2015/04/24  08:43:30     720      60      12.00 default.igr  New Data Run 
  16  2015/04/24  08:44:40     720      60      12.00 default.igr  New Data Run 
  17  2015/04/24  08:45:50     720      60      12.00 default.igr  New Data Run 
  18  2015/04/24  08:46:59     720      60      12.00 default.igr  New Data Run 
  19  2015/04/24  08:48:09     720      60      12.00 default.igr  New Data Run 
  20  2015/04/24  08:49:17     720      60      12.00 default.igr  New Data Run 
  21  2015/04/24  08:50:27     720      60      12.00 default.igr  New Data Run 
  22  2015/04/24  08:51:37     720      60      12.00 default.igr  New Data Run 
  23  2015/04/24  08:52:45     720      60      12.00 default.igr  New Data Run 
  24  2015/04/24  08:53:55     720      60      12.00 default.igr  New Data Run 
  25  2015/04/24  08:55:03     720      60      12.00 default.igr  New Data Run 
  26  2015/04/24  08:56:12     720      60      12.00 default.igr  New Data Run 
  27  2015/04/24  08:57:25     720      60      12.00 default.igr  New Data Run 
  28  2015/04/24  08:58:34     720      60      12.00 default.igr  New Data Run 
  29  2015/04/24  08:59:43     720      60      12.00 default.igr  New Data Run 
  30  2015/04/24  09:00:54     720      60      12.00 default.igr  New Data Run 
  31  2015/04/24  09:02:05     720      60      12.00 default.igr  New Data Run 
  32  2015/04/24  09:03:13     720      60      12.00 default.igr  New Data Run 
  33  2015/04/24  09:04:25     720      60      12.00 default.igr  New Data Run 
  34  2015/04/24  09:05:36     720      60      12.00 default.igr  New Data Run 
  35  2015/04/24  09:06:45     720      60      12.00 default.igr  New Data Run 
  36  2015/04/24  09:07:54     720      60      12.00 default.igr  New Data Run 
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Table H1. One second of one lighting condition for one subject (it was organized in a table for 

convenient viewing) 

Run 1. Sample # Pupil DMM1, mm  
Run 1. Sample # 
(continued) 

Pupil DMM1, mm 
(continued)  

0 0 30 6 
1 0 31 6 
2 1.3 32 6 
3 4.8 33 6.1 
4 5.6 34 6 
5 6 35 6 
6 6 36 6.1 
7 6.1 37 6 
8 6.2 38 6 
9 6.1 39 6 
10 6.1 40 6 
11 6.1 41 6.1 
12 6.2 42 6 
13 6.3 43 6 
14 6.1 44 6 
15 6 45 6 
16 6.1 46 5.9 
17 6.2 47 6 
18 6.1 48 5.8 
19 6.1 49 5.9 
20 6.1 50 5.8 
21 6 51 5.8 
22 5.9 52 5.9 
23 6 53 5.9 
24 6 54 5.8 
25 6 55 5.7 
26 6.1 56 5.7 
27 6.1 57 5.8 
28 6 58 5.9 
29 6 59 5.6 
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Appendix I - Sign-up questions via the website link 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



www.manaraa.com

219 
 

Appendix J – Informed Adult Consent Form 
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Appendix K - Keystone Visual Skills Form  
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Appendix L - Keystone Visual Skills Screening Test Subject Instructions  
 
Experimenter: “This test will be done as a pre-screening for the main experiment. After you have 
completed the pre-screening, you will be informed whether you meet the requirements for the 
main experiment. At that time, you may choose to continue with the experiment or decline. This 
pre-screening test is to confirm you have normal vision. Now let’s begin the pre-screening.” 
 
“Let’s adjust the apparatus. It is essential that you are comfortable when you do this test.” 
 
(In case person does not wear glasses.) 
“Are you wearing contacts?” 
“Is it a new prescription or did you have them for a while?” 
 
(In case subject wears glasses.) 
“First, I need you to make sure your glasses are clean. You can use this spray to clean them. 
Also, please make sure the glasses sit well.” 
 
“Are they bifocal?” (If yes, the experimenter adjusts the Keystone apparatus accordingly.) 
“Are these glasses a new prescription or did you have them for a while?” 
 
“I am going to show you different targets, and ask specific questions about them. Your goal is to 
simply report what you see. Do not pull back between the individual tests. Please always look at 
the targets with both eyes.”  
 
(Experimenter runs the subject through the Keystone Visual Skills Test as directed in the manual. 
Questions are shown below.) 

 
FAR-POINT 
 
TARGET 1 
“What do you see?” “Is the dog directly over the pig?” 
 
TARGET 2 
“Do you see a yellow line and the red figures?” (Pointing.) “What figure does the yellow line 
touch?”  
 
TARGET 3 
“To what number does the arrow point?” 
If it swings between numbers, just tell me the range of the numbers.  
 
TARGET  4 
“How many circles do you see?” OR “Do you see two, three, or four circles?”  
“Are they in vertical alignment?” 
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TARGETS 4 ½ , 5, 6 
“You see some signboards. In No.1 (pointing) you see five white squares. And in one of these 
squares is a black dot. Is it in the right, left, top, or bottom square?” “Where is it in the other 
signs?” (Use pointer.) Continue until you can’t see. 
 
TARGET 7 
“You see (pointing to each figure in the top line) a star, -square, -cross,-heart and ball. Does one 
of them seem to be closer to you than the rest (OR stand out)? Which one in the second line?  
etc. Continue until you can’t see.” 
 
TARGET 8, 9 
Read the number (pointing) in the top ball, in the lower left, and in the lower right.  
 
 
“Ok, we’ve finished the pre-screening test.” 
 
“You meet the requirements for this test”  
(If the subject responds within the expected range on the form or gray, for target 3 it is ok to 
partly be outside 11 or 8, it is ok to be one step out of the expected range)    
OR  
“You don’t meet the requirements for this test.”  
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Appendix M - General Information Survey 
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Appendix N - Instructions for subjects 
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Appendix O - Glare Rating Scale  
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Appendix P - Experiment Instructions (read by experimenter) 
 

(The sources are at 110mA (GS0) & 115mA (GS10), background at 220 during the instructions) 

1. Consent form 
“I will email your consent form to you.” 
 

2. Keystone Test (separate instructions) 
 

3. General introduction 
 
(MANUAL  
Background source is on at 220; 
The fixation point is on IRIS0 @ position 5, GS0 @ 2mA ) 
 
Experimenter: “The research you will be participating in today involves assessing discomfort 
glare from small bright light sources in dark environments. In the study I will show you a 
stimulus that flashes three times, your task is to rate how much discomfort is caused by this 
stimulus.” 
 
“First, I will explain the apparatus to you. Next, I will explain the experimental procedures. Then 
I will attach the electrodes to your face. I will show you the range of possible conditions, we will 
do a few practice trials to get a feeling for the procedure, and then we will start the main 
experiment.” 
 
“Would you please leave your cell phone here, so you are not disturbed during the experiment?” 
 

4. The apparatus introduction 
 
 “First, I will introduce this apparatus to you. This is a sphere where you will make the 
assessments of different lighting conditions presented to you.” 
 
(The experimenter goes inside of the sphere, and the participant sits on a chair in front of it) 
 
“When you are doing the experiments, you will sit in the chair and put your chin on the 
chinrest and your forehead against the forehead rest. It is important that your eyes are 
positioned in line with this 0 degree opening. I will make sure that the eye level matches the 
mark on the chinrest. It is critical. We will adjust the chair so that you are at a comfortable 
position.”    
 
(The experimenter points to the two positions of the targets.) 
 
“The stimuli will be presented to you from one of the two openings – the 0˚ position, and the one 
above it. During the presentation, you must ALWAYS look straight ahead (at 0-degree position). 
This straight-ahead position is multifunctional. Sometimes you will see the fixation point there, 
just like right now. There will be times when no fixation point is going to be on, you can move 
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your eyes without moving your head. Once the fixation point is on, you must always look at it. 
Sometimes instead of the fixation point at 0 degrees you will see a stimulus flashing three times, 
you must look at this stimulus.”  
 
“Do not pull back your head after I show you the stimulus. Please always keep your head in the 
chinrest.”  
 
“If you have any questions feel free to ask me at any time.” 
 
“Now I will let you adjust the chair. I will make sure your eye level is in line with the mark on 
the chinrest. When you pull your chair, watch out for the caster cups attached to the floor.  
And I will adjust the eye-tracking device, so that it tracks your pupil correctly.”   
 
“Are you comfortable?” 
 
“Ok, the eye-tracking device tracks your pupil correctly.” 
 
(If subject answers yes, move on. If subject answers no, readjust. Repeat as needed.) 
 
(Adjust the eye-tracking device, so it tracks the eye correctly) 
 

5. Instructions for the experimental procedures  
 
(Give out a “Rating scale subject instructions” paper sheet to the subject.) 
 
“Would you please turn around for more instructions?”  
 
“I will read the experiment instructions with you.”  
 
(Read the instructions with the subject) 
 
“In total there will be 36 trials. After you finish all the trials, the experimental session will  
be complete.” 
 
“Here is the scale I want you to use.” 
 
(Give the subject a copy of the rating scale, and read the scale with the subject.) 
 
“I will remind you the scale a few times during the experiment, but feel free to ask at any time.” 
 
“Any questions at this stage?” 
 
“Now let’s attach the electrodes. They might feel a little unusual, but nothing is going to hurt. 
The electrodes just record the muscle activity around your eyes.  
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Let me clean the areas on your face with Alcohol Swab. I put some gel on the electrodes. And 
now, let us place them on the appropriate areas. We need to make sure they are attached well, so 
we’ll apply some tape.”  
(Attach the electrodes, have plus and minus go around the ears, tie the electrodes behind the 
subject.) 
 “Let me clip them together behind your head”. 
 

6. Range of the conditions 
 
(MANUAL part of the software;  
Lowest – GS0 2mA, position 5; GS10 16mA; background 220, IRIS10 position 2; 
Highest – GS0 410 mA, background 1, IRIS 0 position 3) 
 
“Now I will show you the range of possible conditions, so you know what to expect.” 
 
(Switch on a condition that creates no sensation of discomfort glare) 
 
“Keep looking at the fixation point. Most people would say that this condition creates no 
discomfort glare. It is 0 on the glare rating scale.” 
 
(Change the lighting condition to the one that creates very high discomfort glare) 
 
“Keep on looking straight ahead. Most people would say that this level of light is intolerably 
glaring. It is 6 on the glare rating scale.” 
 
“In the main experiment you will see different lighting conditions in a random order. They will 
create various levels of discomfort that you’re going to rate on a scale of 0 through 6.” 
 
“Now let us do a few practice trials.” 
 

7. Practice trials 
 
(Load scenarios file (in the input part of the AUTO test) just like in the main experiment, 
randomize) 
 
“I will remind you of the procedures step-by-step.” 
 
“When there’s no fixation point, you may look around without moving your head. It gives an 
opportunity to relax your eyes a little. Once the fixation point is on, you must look at it at all 
times. Now, please rate the level of discomfort on a scale of 0 through 6.”  
 
(Wait for the subject to tell the level of discomfort)  
(Change the lighting condition to another one. Repeat a few more times (at least 3).) 
 
 “Let us do one more practice trial, and if you are comfortable with the procedure, we can 
continue with the main experiment.”  
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“Are you ready to proceed?” 
 (The experimenter repeats a practice trial as needed) 
 

8. The main experiment 
“Let me close the curtain, so no light from outside can enter the sphere.” 
 
“Ok. Let us start.” 
 
(The software runs the lighting conditions in a random order (it changes the luminance of the 
light source, its size, its position, and/or background luminance.) 
 
On the 39th increment (1 increment = 1.2 seconds in duration) of the each lighting condition 
manually click record the eye-tracking data (720 data points = 12 seconds). 
 
Repeat the scale wording every 10 conditions (3 times total). 
 
“Please rate the level of discomfort.”  
 
(When a subject completes all 36 trials, the session is over.) 
 
“This completes the study.  I will ask you to answer a one-question survey before you leave.”  
 
(Save all the files with the subject’s recordings including the eye-tracking data.) 
 
‘Thank you.” 
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Appendix Q - Survey on the Experiment  
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Appendix R - SAS Command File for Subjective Responses Analysis 
The output file is not printed here due to its large size. 

data MAIN; 
Input subjid a1-a36 age; 
 
/*EXCLUDED 9 subjects (problematic eye tracking data); 
Levels: 
lumin1 = 20,000  lumin2 = 205,000 lumin3 = 750,000 
posit1 = 0   posit2 = 10 
backs1= 0.03  backs2 = 0.3  backs3 = 1 
solid1 = 10^(-5) solid2 = 10^(-4)  
*/ 
 
/*Computation of means*/ 
lumin1 = mean (of a1-a12); /*computes mean of all conditions with luminance 1 
(20,000)*/ 
lumin2 = mean (of a13-a24); /*computes mean of all conditions with luminance 
2 (205,000)*/ 
lumin3 = mean (of a25-a36); /*computes mean of all conditions with luminance 
3 (750,000)*/ 
 
posit1 = mean (a1, a2, a3, a4,a5, a6,a13, a14, a15, a16, a17, a18, a25, a26, 
a27, a28,a29, a30); 
/*computes mean of all conditions with position 1 (0)*/ 
posit2 = mean (a7, a8, a9, a10, a11, a12, a19, a20, a21, a22, a23, a24, a31, 
a32, a33, a34, a35, a36); 
/*computes mean of all conditions with position 2 (10)*/ 
 
solid1 = mean (a1, a2, a3,a7, a8, a9, a13, a14, a15, a19, a20, a21, a25, a26, 
a27, a31, a32, a33); 
/*computes mean of all conditions with solid angle 1 (10^-5 sr)*/ 
solid2 = mean (a4, a5, a6,a10, a11, a12, a16, a17, a18, a22, a23, a24, a28, 
a29, a30, a34, a35, a36); 
/*computes mean of all conditions with solid angle 2 (10^-4 sr)*/ 
 
backs1 = mean (a1, a4, a7, a10, a13, a16, a19, a22, a25, a28, a31, a34); 
/*computes mean of all conditions with background luminance 1 (0.03)*/ 
backs2 = mean (a2, a5, a8, a11, a14, a17, a20, a23, a26, a29, a32, a35); 
/*computes mean of all conditions with background luminance 2 (0.3)*/ 
backs3 = mean (a3, a6, a9, a12, a15, a18, a21, a24, a27, a30, a33, a36);  
/*computes mean of all conditions with background luminance 3 (1)*/ 
 
lumin1pos1 = mean(a1, a2, a3, a4, a5, a6); /*computes mean of all conditions 
with luminance 1 & position1*/ 
lumin1pos2 = mean(a7, a8, a9, a10, a11, a12); 
lumin2pos1 = mean(a13, a14, a15, a16, a17, a18); 
lumin2pos2 = mean(a19, a20, a21, a22, a23, a24); 
lumin3pos1 = mean(a25, a26, a27, a28, a29, a30); 
lumin3pos2 = mean(a31, a32, a33, a34, a35, a36); 
 
lumin1sol1 = mean (a1, a2, a3, a7, a8, a9);  
lumin1sol2 = mean (a4, a5, a6, a10, a11, a12); 
lumin2sol1 = mean (a13, a14, a15, a19, a20, a21); 
lumin2sol2 = mean (a16, a17, a18, a22, a23, a24); 
lumin3sol1 = mean (a25, a26, a27, a31, a32, a33); 
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lumin3sol2 = mean (a28, a29, a30, a34, a35, a36); 
 
lumin1backs1 = mean (a1, a4, a7, a10); 
lumin1backs2 = mean (a2, a5,a8, a11); 
lumin1backs3 = mean (a3, a6, a9, a12); 
lumin2backs1 = mean (a13, a16, a19, a22); 
lumin2backs2 = mean (a14, a17, a20, a23); 
lumin2backs3 = mean (a15, a18, a21, a24); 
lumin3backs1 = mean (a25, a28, a31, a34); 
lumin3backs2 = mean (a26, a29, a32, a35); 
lumin3backs3 = mean (a27, a30, a33, a36); 
 
pos1sol1 = mean (a1, a2, a3, a13, a14, a15, a25, a26, a27); 
pos1sol2 = mean (a4, a5, a6, a16, a17, a18, a28, a29, a30); 
pos2sol1 = mean (a7, a8, a9, a19, a20, a21, a31, a32, a33); 
pos2sol2 = mean (a10, a11, a12, a22, a23, a24, a34, a35, a36); 
 
pos1backs1 = mean (a1, a4, a13, a16, a25, a28); 
pos1backs2 = mean (a2, a5, a14, a17, a26, a29); 
pos1backs3 = mean (a3, a6, a15, a18, a27, a30); 
pos2backs1 = mean (a7, a10, a19, a22, a31,a34); 
pos2backs2 = mean (a8, a11, a20, a23, a32, a35); 
pos2backs3 = mean (a9, a12, a21, a24, a33, a36); 
 
sol1backs1 = mean (a1, a7, a13, a19, a25, a31); 
sol1backs2 = mean (a2, a8, a14, a20, a26, a32); 
sol1backs3 = mean (a3, a9, a15, a21, a27, a33); 
sol2backs1 = mean (a4, a10, a16, a22, a28, a34); 
sol2backs2 = mean (a5, a11, a17, a23, a29, a35); 
sol2backs3 = mean (a6, a12, a18, a24, a30, a36); 
 
Cards; 
1 1 1 0 5 4 5 1 1 0 2 5 2
 4 4 3 6 6 6 4 3 0 5 3 4
 5 4 4 6 6 6 2 3 2 6 6 5
 44 
2 1 0 1 3 4 3 2 2 1 2 3 2
 4 3 4 6 6 5 3 3 2 5 4 3
 4 4 4 6 6 5 4 3 3 6 5 4
 32 
3 1 1 0 5 3 3 1 2 0 3 2 1
 2 3 1 6 6 5 2 2 3 5 4 4
 5 3 3 6 6 6 4 4 2 5 6 4
 34 
4 2 1 2 3 3 3 1 0 1 2 2 2
 1 3 4 5 5 4 2 2 2 4 3 3
 4 4 4 6 6 6 3 2 3 5 5 4
 28 
5 1 0 1 3 2 1 0 0 0 1 2 2
 3 4 3 6 5 5 2 2 2 4 4 4
 4 3 5 6 6 6 3 3 2 6 6 5
 40 
6 1 1 1 3 2 2 1 1 1 3 3 3
 3 3 2 4 5 4 2 2 1 3 2 3
 3 4 2 6 5 6 2 2 2 4 4 4
 48 
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7 0 0 1 3 4 2 1 0 0 4 2 0
 1 2 0 6 5 6 2 1 0 5 4 4
 5 2 2 6 6 5 2 5 3 6 6 6
 22 
8 1 1 1 3 4 3 3 3 1 4 2 2
 1 3 1 6 5 4 4 2 2 5 3 4
 2 2 2 6 5 4 5 4 4 6 6 5
 24 
9 0 1 0 3 2 3 2 1 1 5 3 2
 4 4 2 6 5 5 3 3 0 6 4 2
 5 4 0 5 6 6 4 2 2 6 6 4
 24 
10 0 0 0 3 0 0 0 0 0 1 0 0
 0 0 0 4 4 2 0 0 0 4 4 2
 4 2 0 6 4 5 4 3 2 6 6 6
 26 
11 1 0 2 2 2 1 1 1 0 3 3 3
 4 2 3 5 6 4 3 2 1 4 5 3
 5 5 3 6 6 5 4 5 4 6 6 5
 44 
12 2 0 1 4 3 4 2 0 0 3 2 0
 4 3 1 6 5 6 3 2 3 5 3 4
 6 5 3 6 6 6 4 2 2 6 5 5
 20 
13 1 0 2 3 2 2 1 0 0 3 3 1
 2 2 3 6 4 5 2 3 3 5 4 4
 4 4 4 6 6 6 4 4 4 5 6 6
 42 
14 1 0 1 3 3 4 1 0 0 3 3 2
 3 1 0 5 5 4 5 2 2 6 6 5
 5 3 3 6 6 6 4 3 2 6 6 6
 59 
15 1 1 1 3 3 2 1 1 1 2 2 1
 2 3 1 6 4 4 4 2 2 4 3 3
 3 3 3 6 6 6 3 5 2 5 5 5
 42 
16 3 3 2 5 3 3 2 2 2 4 4 3
 4 4 3 5 5 4 3 4 2 5 4 4
 5 5 5 6 5 5 5 4 4 6 5 5
 51 
17 3 1 1 6 4 3 2 1 1 3 2 1
 5 5 2 6 6 5 4 1 1 5 5 4
 6 2 4 6 6 5 4 2 2 5 6 5
 41 
18 1 1 0 5 3 2 1 2 1 2 2 3
 3 2 3 6 6 6 3 2 0 5 4 4
 5 3 4 6 5 5 4 4 4 4 5 6
 37 
19 2 1 0 5 3 3 4 2 1 5 4 1
 4 4 5 6 5 5 5 3 3 6 6 4
 5 5 5 6 6 6 5 5 4 6 6 6
 23 
20 2 2 1 4 3 4 2 2 2 3 4 2
 4 3 2 6 6 6 3 1 3 5 5 4
 4 5 3 6 6 6 4 4 4 6 6 5
 43 
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21 0 0 0 3 2 2 0 0 0 2 2 1
 2 3 1 5 4 4 2 2 1 5 4 4
 4 2 2 6 6 6 4 3 3 5 5 4
 52 
22 1 1 0 3 2 2 3 2 1 3 4 4
 3 3 2 6 6 4 3 4 1 5 5 4
 3 2 2 6 6 6 5 5 4 6 6 5
 40 
23 1 1 1 4 3 2 1 1 0 1 1 1
 3 2 2 5 5 5 1 1 1 2 2 2
 4 3 3 6 6 5 2 1 1 4 4 4
 55 
24 1 1 0 4 3 2 1 0 1 2 3 1
 3 2 2 6 4 5 4 2 0 4 5 3
 4 3 1 6 6 5 4 4 2 4 4 4
 34 
25 2 0 0 3 4 5 2 2 1 4 3 2
 5 3 2 6 5 5 5 4 1 6 5 4
 5 4 4 6 6 6 5 3 3 6 6 5
 55 
26 2 1 1 3 2 2 1 0 0 3 2 1
 1 1 1 5 3 5 4 2 2 3 5 4
 4 3 2 6 6 5 4 2 2 5 4 4
 43 
27 1 2 2 4 3 4 3 1 2 4 3 3
 4 3 2 5 6 6 2 3 3 5 5 5
 5 5 5 6 6 6 3 4 3 5 5 5
 32 
28 0 0 0 3 0 0 0 0 0 0 0 0
 2 0 0 6 4 3 1 1 0 6 5 4
 2 5 2 6 6 5 4 4 1 6 6 6
 28 
29 2 2 2 3 3 3 3 3 2 3 3 3
 3 3 3 5 5 4 4 3 3 5 4 5
 5 4 3 6 6 6 4 4 3 6 5 5
 28 
30 1 0 0 2 1 1 0 0 0 1 1 0
 3 1 3 6 5 5 0 2 0 5 3 4
 2 3 4 6 6 5 3 2 1 6 5 5
 38 
31 2 2 1 3 3 2 2 2 0 3 1 3
 4 3 3 6 6 6 4 3 4 4 5 3
 6 5 4 6 6 6 5 4 2 6 6 5
 60 
32 2 2 2 4 4 3 2 3 2 4 3 3
 4 4 3 6 6 5 3 3 3 5 5 4
 6 4 4 6 6 6 6 4 4 6 6 5
 30 
33 2 0 0 5 2 2 0 1 0 5 4 2
 6 3 2 6 6 4 3 0 0 6 6 5
 5 4 4 6 6 6 4 4 4 6 5 5
 24 
34 1 1 1 4 3 4 1 1 1 2 1 2
 2 2 1 5 5 5 2 1 2 4 4 4
 3 4 2 6 6 6 3 3 2 5 4 5
 48 
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35 2 2 1 3 2 2 2 1 1 3 3 2
 4 2 2 6 5 4 3 3 2 5 4 4
 4 4 3 6 6 6 4 3 3 6 5 4
 43 
36 1 2 1 4 3 4 2 2 1 3 3 3
 3 2 2 6 6 5 5 3 3 6 5 5
 3 4 4 6 6 6 4 4 4 6 5 6
 28 
37 1 0 3 4 3 3 1 1 0 2 2 1
 4 2 2 6 5 5 1 2 3 4 2 2
 5 5 4 6 6 6 3 4 3 6 5 5
 45 
38 2 1 1 3 2 2 2 1 1 3 3 2
 4 2 3 5 4 5 2 2 2 4 3 3
 4 4 5 6 6 6 4 2 3 6 6 4
 38 
39 3 2 3 4 5 4 3 3 2 4 5 4
 5 3 4 6 6 6 5 3 3 6 6 5
 5 5 6 6 6 6 5 6 5 6 6 6
 76 
40 0 1 0 3 2 2 2 1 0 3 3 2
 2 1 1 5 5 3 2 3 2 5 4 3
 4 3 3 6 6 5 3 2 3 6 5 4
 60 
41 0 1 1 4 3 2 1 2 2 3 3 3
 1 2 1 4 4 4 2 3 2 4 4 4
 4 2 3 6 6 5 3 3 3 5 5 4
 20 
42 0 0 0 4 1 0 0 0 0 1 0 1
 0 0 0 5 2 2 3 1 1 5 3 3
 3 3 0 6 6 5 3 1 2 6 6 5
 61 
43 3 0 1 3 3 2 0 0 1 3 3 2
 0 2 3 6 4 4 3 0 0 1 3 4
 5 0 3 6 6 4 3 1 2 5 5 0
 57 
44 2 2 2 1 1 1 2 1 1 3 2 2
 4 3 2 4 6 5 2 3 2 3 4 4
 5 4 2 5 6 6 3 3 2 5 5 4
 41 
45 2 1 1 3 1 1 2 1 0 4 3 2
 3 3 3 6 5 3 4 2 3 5 5 3
 4 4 3 6 5 6 5 4 3 6 5 5
 30 
46 3 1 2 3 2 2 2 1 1 3 2 2
 4 4 4 5 5 5 4 3 3 6 3 4
 6 5 4 6 5 6 5 4 3 6 5 5
 33 
47 1 0 0 1 1 1 1 1 0 3 2 2
 2 3 1 6 5 5 3 3 2 5 4 5
 3 4 3 6 6 6 4 3 2 6 6 5
 22 
;; 
 
proc print data=MAIN; 
run; 
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proc means data = MAIN var; 
var a1-a36; 
run; 
 
proc means data = MAIN; 
var age 
lumin1 lumin2 lumin3 
posit1 posit2 
solid1 solid2 
backs1 backs2 backs3 
lumin1pos1 lumin1pos2 lumin2pos1 lumin2pos2 lumin3pos1 lumin3pos2 
lumin1sol1 lumin1sol2 lumin2sol1 lumin2sol2 lumin3sol1 lumin3sol2 
lumin1backs1 lumin1backs2 lumin1backs3  
lumin2backs1 lumin2backs2 lumin2backs3  
lumin3backs1 lumin3backs2 lumin3backs3 
pos1sol1 pos1sol2 pos2sol1 pos2sol2 
pos1backs1 pos1backs2 pos1backs3 pos2backs1 pos2backs2 pos2backs3  
sol1backs1 sol1backs2 sol1backs3 sol2backs1 sol2backs2 sol2backs3; 
run; 
 
/*It allows to check confidence interval - standard error*1.96 = margin of 
error */ 
proc surveymeans data = MAIN; 
var a1-a36; 
run; 
proc surveymeans data = MAIN; 
var age 
lumin1 lumin2 lumin3 
posit1 posit2 
solid1 solid2 
backs1 backs2 backs3; 
run; 
 
proc glm data=MAIN; 
model a1-a36 = /nouni;  
repeated luminance 3 polynomial, position 2 polynomial, solidangle 2 
polynomial, backgroundlum 3 polynomial/nom summary; 
run; 
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Appendix S - Step-by-step calculations of discomfort glare for the 36 lighting conditions using the applicable 
metrics 

Table S1. Metric 1 - Outdoor sports and area lighting metric (CIE 112-1994) 
Equation Glare rating (GR) 

�� = �� + ����� (
���

���
�.�)    

Components of the equation ���= ��∑
������,�

��
�

�
���    

��� is the equivalent veiling luminance produced by the luminaires, in cd/m2; 
Eglare is the illuminance at the observer’s eyes in a plane perpendicular to the line of sight, 
produced by the i-th glare source, in lx; 
θ is the angle of displacement of the glare source from the observer’s line of sight, in 
degrees; 
n is the total number of glare sources.  
��� = �.��� × ��,��   

Lve is the equivalent veiling luminance from the environment, in cd/m2; 
Lf,av  is the average field luminance, in cd/m2; 

Subjective scale 90 unbearable 
80 
70 disturbing 
60 
50 just admissible 
40 
30 noticeable 
20 
10 unnoticeable 

Validity/limitations Restricted to viewing directions below eye level (CIE 112-1994). 
The angular displacement is limited to 1.5˚ <θ < 60˚ (CIE 112-1994). 
Lve = (0.02-5) cd/m^2 (Tekelenburg 1982, Van Bommel et al. 1983). 
Lvl = (0.02-20) cd/m^2 (Tekelenburg 1982, Van Bommel et al. 1983). 
Viewing directions from the luminaire position were within 10˚ - 90˚ in the studies that lead 
to the CIE standard development (Tekelenburg 1982, Van Bommel et al. 1983). 
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The first row in tables S2, S4, S6, and S8 in Appendix S show the validity range/limitations of the metric discussed. The 
second row of the table shows the parameters of the discomfort glare equation. 

 
Equation parameters and calculations in table S2 
Eglare, lx is the measured direct component of illuminance from the glare source at the center of the chinrest (between the eyes). 

It was averaged for the measurements taken during 4/26/2015-5/16/2015. 
θ, degrees is the angle between the fixation point and the glare source. 
Lb, cd/m2 is the measured background luminance created by the source above the subject’s head. It was averaged for the 

measurements taken during 4/11/2015-5/16/2015. 
GR becomes infinitely large, when θ=0˚ is used. This value was substituted with 1’=0.017˚ for calculation of GR, as shown in 

the “SUBSTITUTED θ, degrees” column. 
Some values in Lve and Lvl columns fall outside of the validity ranges as specified by the studies that led to the metric 

development (Tekelenburg 1982, Bommel et al. 1983). They are shown in cursive. 
The GR calculated for each lighting condition is shown in the last column of the table. 
 

Table S2. Calculations of GR and its parameters as defined by CIE 112-1994  

Validity range/ 
limitations 

  

Viewing 
directions 
below eye 

level; (1.5-60) 
degrees 

 

    
(0.02-5) 
cd/m^2 

 

(0.02-20) 
cd/m^2  

(10 - 90)  

Condition 
(scenario) # 

Eglare, lx θ, degrees Lb, cd/m^2 
SUBSTITUTED 

θ, degrees 
Lve, cd/m^2 Lvl, cd/m^2 GR 

1 0.16 0 0.037 0.017 0.001 5449.83 179 

2 0.16 0 0.344 0.017 0.012 5449.83 158 

3 0.16 0 1.156 0.017 0.040 5449.83 147 

4 1.97 0 0.037 0.017 0.001 68166.09 205 

5 1.97 0 0.344 0.017 0.012 68166.09 184 

6 1.97 0 1.156 0.017 0.040 68166.09 173 

7 0.21 10 0.037  0.001 0.02 49 

8 0.21 10 0.344  0.012 0.02 28 
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9 0.21 10 1.156  0.040 0.02 17 

10 2.40 10 0.037  0.001 0.24 74 

11 2.40 10 0.344  0.012 0.24 54 

12 2.40 10 1.156  0.040 0.24 42 

13 1.89 0 0.037 0.017 0.001 65397.92 205 

14 1.89 0 0.344 0.017 0.012 65397.92 184 

15 1.89 0 1.156 0.017 0.040 65397.92 173 

16 22.62 0 0.037 0.017 0.001 782525.95 231 

17 22.62 0 0.344 0.017 0.012 782525.95 210 

18 22.62 0 1.156 0.017 0.040 782525.95 199 

19 1.92 10 0.037  0.001 0.19 72 

20 1.92 10 0.344  0.012 0.19 51 

21 1.92 10 1.156  0.040 0.19 40 

22 22.31 10 0.037  0.001 2.23 98 

23 22.31 10 0.344  0.012 2.23 77 

24 22.31 10 1.156  0.040 2.23 65 

25 6.86 0 0.037 0.017 0.001 237283.74 218 

26 6.86 0 0.344 0.017 0.012 237283.74 197 

27 6.86 0 1.156 0.017 0.040 237283.74 186 

28 81.48 0 0.037 0.017 0.001 2819204.15 244 

29 81.48 0 0.344 0.017 0.012 2819204.15 223 

30 81.48 0 1.156 0.017 0.040 2819204.15 212 

31 6.67 10 0.037  0.001 0.67 85 

32 6.67 10 0.344  0.012 0.67 64 

33 6.67 10 1.156  0.040 0.67 53 

34 77.45 10 0.037  0.001 7.75 111 

35 77.45 10 0.344  0.012 7.75 90 

36 77.45 10 1.156  0.040 7.75 78 
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Table S3. Metric 2 - Motor vehicle lighting (Schmidt-Clausen and Bindels 1974) 
Equation Discomfort glare rating (W) 

� = � − ����
������

�.�������
�����

�.��
�∙��.��

    

Components of the equation W is the discomfort glare rating on a 9-point scale (smaller numbers mean more discomfort); 
Eglare is the glare illuminance at the eyes, in lx; 
Ladap is the adaptation luminance, in cd/m2; 
θ is the angle between the direction of viewing and the direction of the glare source, in min. 
arc; 

Subjective scale ORIGINAL INVERTED 
Unbearable 1 Noticeable 1 
2 2 
Disturbing 3 Acceptable 3 

4 4 

Just admissible 5 Just admissible 5 
6 6 
Acceptable 7 Disturbing 7 

8 8 
Noticeable 9 Unbearable 9 

  

Validity/limitations The authors investigated discomfort glare in the following ranges. Eglare = 0.0025-6.9 lx, 
Ladap=0.0015-2 cd/m2, θ = 10'-90˚. 
The glare source subtended an angle of 8’ at the observer’s eyes (equivalent to the diameter 
of 24 cm at the distance of 100 m).  
The sky was considered to be black. 

 
Equation parameters and calculations in table S4 
 
Eglare, lx is the measured direct component of illuminance from the glare source at the center of the chinrest (between the eyes). 

It was averaged for the measurements taken during 4/26/2015-5/16/2015. 
Ladap, cd/m2 is the measured background luminance created by the source above the subject’s head. It was averaged for the 

measurements taken during 4/11/2015-5/16/2015. 
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θ, minutes of arc is the angle between the fixation point and the glare source. 
Discomfort glare rating (W) becomes infinitely large, when θ=0’ is used. This value was substituted with 1’ for the calculation 

of W, as shown in the “SUBSTITUTED θ, min” column. 
Some values in the Eglare column fall outside of the ranges used in the experiment for developing this metric. They are shown in 

cursive. 
The calculated W for each lighting condition is shown in the second to last column in the table. Values smaller than 1 fall 

outside of the predefined subjective scale range for this metric (1-9) and are shown in cursive.  
The calculated W has an inverted scale as compared to the subjective scale used in the current study (lower number means 

more glare in this W metric). For the ease of the comparison, the scale W was inverted by subtracting the resulting number as 
calculated by this metric from the number 10. Now, higher ratings for both W and subjective responses in this study mean more glare. 
 

Table S4. Calculations of W and its components as defined by Schmidt-Clausen and Bindels 1974 
Validity range/ 

limitations 
0.0025-6.9 lx 0.0015-2 cd/m^2   10'-90˚  

(1(max glare) - 
9)  

(1 – 9(max 
glare))  

Condition 
(scenario) # 

Eglare, lx Ladap, cd/m^2 θ, min 
SUBSTITUTE

D θ, min  
W 

W inverted 
scale 

       
1 0.16 0.037 0 1 2.1 7.9 

2 0.16 0.344 0 1 2.7 7.3 

3 0.16 1.156 0 1 3.2 6.8 

4 1.97 0.037 0 1 0.0 10.0 

5 1.97 0.344 0 1 0.6 9.4 

6 1.97 1.156 0 1 1.0 9.0 

7 0.21 0.037 600  4.5 5.5 

8 0.21 0.344 600  5.1 4.9 

9 0.21 1.156 600  5.5 4.5 

10 2.40 0.037 600  2.3 7.7 

11 2.40 0.344 600  2.9 7.1 

12 2.40 1.156 600  3.4 6.6 

13 1.89 0.037 0 1 0.0 10.0 
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14 1.89 0.344 0 1 0.6 9.4 

15 1.89 1.156 0 1 1.0 9.0 

16 22.62 0.037 0 1 -2.2 12.2 

17 22.62 0.344 0 1 -1.6 11.6 

18 22.62 1.156 0 1 -1.1 11.1 

19 1.92 0.037 600  2.5 7.5 

20 1.92 0.344 600  3.1 6.9 

21 1.92 1.156 600  3.6 6.4 

22 22.31 0.037 600  0.4 9.6 

23 22.31 0.344 600  1.0 9.0 

24 22.31 1.156 600  1.4 8.6 

25 6.86 0.037 0 1 -1.1 11.1 

26 6.86 0.344 0 1 -0.5 10.5 

27 6.86 1.156 0 1 -0.1 10.1 

28 81.48 0.037 0 1 -3.3 13.3 

29 81.48 0.344 0 1 -2.7 12.7 

30 81.48 1.156 0 1 -2.3 12.3 

31 6.67 0.037 600  1.5 8.5 

32 6.67 0.344 600  2.1 7.9 

33 6.67 1.156 600  2.5 7.5 

34 77.45 0.037 600  -0.7 10.7 

35 77.45 0.344 600  -0.1 10.1 

36 77.45 1.156 600  0.3 9.7 
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Table S5. Metric 3 – Bullough’s et al. formulas (2008, 2011). Combination of two formulas 
Equation  De Boer rating (DB) 

�� = �.� − �.������  (2008) 
 
For GS of the angular size of 0.3º or more: 
DB=6.6-6.4logDG+1.4log(50,000/LL)  (2011)  

Components of the equation DB – the De Boer discomfort glare rating (smaller numbers mean more discomfort). 

�� = ���(��+ ��)+ �.�����
��
��
� − �.����(��) 

E� is the ambient illuminance, in lx, it is a vertical illuminance at the subject’s viewing 
location (light source switched off); 
E� is the vertical illuminance from the light source at the subject’s viewing location, in lx 
(h=1.5m) (direct illuminance from the light source);  
E� is the surround illuminance, in lx (the total illuminance at the subjects’ eyes minus El and 
Ea, i.e. illuminance at the eyes received from a light source after being reflected or scattered). 

Subjective scale ORIGINAL INVERTED 
Unbearable 1 Just noticeable 1 
2 2 
Disturbing 3 Satisfactory 3 

4 4 

Just permissible 5 Just permissible 5 
6 6 
Satisfactory 7 Disturbing 7 

8 8 
Just noticeable 9 Unbearable 9 

  

Validity/limitations The authors developed the metric in the following ranges of variables. El=0.1-113.3 lx, Es = 
0.01-0.4 lx, Ea=0.01-1.6, Ll=5,300-196,000 cd/m2, viewing distance 3-20 m. 
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Equation parameters and calculations in table S6 parts 1 and 2 
 
El, lx is the measured direct component of illuminance from the glare source at the center of the chinrest (between the eyes). It 

was averaged for the measurements taken during 4/26/2015-5/16/2015. It is the same as Eglare in the previous two DG models – 
outdoor sports and area lighting and motor vehicle lighting models.  

Es, lx is the surround illuminance, the illuminance at the eyes received from a light source after being reflected. There are two 
columns with Es in the table S6 part 1, one has the calculated value (Es=Etotal-Ea-El), and the other one has the measured value that was 
averaged for 4/26/2015-5/16/2015. Es - calculated resulted in the negative numbers for certain scenarios due to a potential aggregated 
measuring error of its components (shown in cursive). Therefore, Es - measured was used for the final calculation of the discomfort 
glare prediction. 

Ea, lx is the measured ambient illuminance and averaged for the measurements taken during 4/26/2015-5/16/2015. It was 
created with the source above the subject’s head. Some values fall outside of the validity ranges, shown in cursive. 

Ll,cd/m2 is the measured luminance of the glare source at both positions 0˚ and 10˚. It was averaged for the measurements 
taken during 4/11/2015-5/16/2015. Some values fall outside of the validity ranges, shown in cursive. 

Etotal, lx is the measured total illuminance at the center of the chinrest (between the subject’s eyes). It was averaged for the 
measurements taken during 4/26/2015-5/16/2015. 

 
The intermediate step of discomfort glare calculation resulted in the negative numbers for the DG component (numbers in 

cursive in the DG (with measured Es) column). This means that for those lighting conditions it is impossible to calculate glare, because 
logarithm - which is used in the calculation of DB - of a negative number is not defined. What would be a meaningful substitution in 
this case? All numbers should be transformed into a new set of numbers by performing the same mathematical operation in order to 
maintain the relative nature between the amount of discomfort glare experienced. The subjective scales are arbitrary. What is 
important is to preserve the relative nature between the assessments.  Even in the CIE 112 (1994) technical report, it is indicated that 
the scale’s purpose is not to specify the glare restriction limits, but to offer insight into the practical meaning of differences in glare 
ratings for evaluation purposes. It makes it possible to find out how much more or less glare one lighting condition creates as 
compared to the other. Therefore, the investigator decided to add a constant to all values to make them positive (DG (with measured 
Es)+(const=1) column). 

 
Bullough found out that for a light source of the angular size of 0.3º or more the glare model includes 

luminance of the light source (LL) in its equation (version 2011). Since in this discomfort glare study light source has two levels of the 
solid angle 10-4 sr = 0.64˚ and 10-5sr = 0.2˚, therefore, two versions of the equations were used to predict discomfort glare from RPI’s 
equations. Discomfort glare for lighting conditions where glare sources had a solid angle of 10-5 sr was calculated using 2008 
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equation, for glare sources of 10-4 sr 2011 equation was used. The columns 2 and 3 of the table S6 part 2 show calculations of DG by 
RPI’s 2008 and 2011 metrics respectively. The numbers that are valid for this study are shown in bold in those columns.  

The second to last column in table S6 part 2 shows the combination of calculations by both equations, and the last column 
shows the final inverted scale of DB. 

 
Table S6. Part 1. Calculations of DB and its components as defined by Bullough et al. 2008&2011  

Validity 
range/ 

limitations 

0.1 to 
113.3 lx 

0.01-0.4 lx 0.01-0.4 lx 0.01-1.6 lx 
5,300-

196,000 

Viewing 
distance 3 -

20, m 
    

Condition 
(scenario) # 

El, lx 
Es 

(calculated), 
lx 

Es 

(measured), 
lx 

Ea, lx Ll, cd/m^2 Etotal, lx 
DG (with 
measured 

Es) 

DG (with 
measured 

Es) + 
(const=1) 

1 0.16 0.02 0.02 0.11 20,477 0.29 0.27 1.27 

2 0.16 0.05 0.02 1.00 20,477 1.22 -0.21 0.79 

3 0.16 0.21 0.02 3.58 20,477 3.95 -0.49 0.51 

4 1.97 0.05 0.02 0.11 20,477 2.13 1.97 2.97 

5 1.97 0.12 0.02 1.00 20,477 3.10 1.49 2.49 

6 1.97 0.24 0.02 3.58 20,477 5.79 1.22 2.22 

7 0.21 0.02 0.02 0.11 23,460 0.34 0.44 1.44 

8 0.21 0.09 0.02 1.00 23,460 1.30 -0.04 0.96 

9 0.21 0.20 0.02 3.58 23,460 3.98 -0.32 0.68 

10 2.40 0.03 0.02 0.11 23,460 2.54 2.11 3.11 

11 2.40 0.10 0.02 1.00 23,460 3.50 1.63 2.63 

12 2.40 0.21 0.02 3.58 23,460 6.19 1.35 2.35 

13 1.89 0.02 0.02 0.11 213,417 2.02 1.95 2.95 

14 1.89 0.10 0.02 1.00 213,417 2.99 1.47 2.47 

15 1.89 0.20 0.02 3.58 213,417 5.67 1.19 2.19 

16 22.62 0.19 0.03 0.11 213,417 22.92 3.56 4.56 

17 22.62 0.26 0.03 1.00 213,417 23.88 3.08 4.08 
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18 22.62 0.37 0.03 3.58 213,417 26.56 2.80 3.80 

19 1.92 0.01 0.02 0.11 221,580 2.05 1.96 2.96 

20 1.92 0.07 0.02 1.00 221,580 3.00 1.48 2.48 

21 1.92 0.19 0.02 3.58 221,580 5.69 1.20 2.20 

22 22.31 -0.05 0.02 0.11 221,580 22.38 3.66 4.66 

23 22.31 0.02 0.02 1.00 221,580 23.34 3.18 4.18 

24 22.31 0.13 0.02 3.58 221,580 26.02 2.90 3.90 

25 6.86 0.03 0.02 0.11 760,733 7.00 2.84 3.84 

26 6.86 0.06 0.02 1.00 760,733 7.92 2.36 3.36 

27 6.86 0.15 0.02 3.58 760,733 10.58 2.08 3.08 

28 81.48 -0.14 0.06 0.11 760,733 81.45 4.29 5.29 

29 81.48 -0.15 0.06 1.00 760,733 82.33 3.81 4.81 

30 81.48 -0.10 0.06 3.58 760,733 84.95 3.54 4.54 

31 6.67 0.00 0.02 0.11 766,440 6.78 2.82 3.82 

32 6.67 0.03 0.02 1.00 766,440 7.70 2.34 3.34 

33 6.67 0.11 0.02 3.58 766,440 10.35 2.06 3.06 

34 77.45 -0.09 0.03 0.11 766,440 77.48 4.39 5.39 

35 77.45 -0.13 0.03 1.00 766,440 78.33 3.91 4.91 

36 77.45 -0.03 0.03 3.58 766,440 81.00 3.64 4.64 

 
Table S6. Part 2. Calculations of DB and its components as defined by Bullough et al. 2008&2011  

Validity range/ 
limitations 

Only conditions that 
had GS of 10^-5 sr are 
valid from this column 

Only conditions that 
had GS of 10^-4 sr are 
valid from this column 

(1(max glare)-9)  (1-9(max glare)) 

Condition (scenario) # 
DB (2008) (from DG 
Es meas. + (const=1)) 

DB (2011) (from DG 
Es meas. + (const=1))  

DB (combination of 
2008 & 2011) 

DB, inverted scale 

1 5.94 6.49 5.94 4.06 

2 7.27 7.81 7.27 2.73 
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3 8.47 9.01 8.47 1.53 

4 3.57 4.11 4.11 5.89 

5 4.06 4.60 4.60 5.40 

6 4.39 4.93 4.93 5.07 

7 5.59 6.05 5.59 4.41 

8 6.72 7.18 6.72 3.28 

9 7.66 8.12 7.66 2.34 

10 3.45 3.91 3.91 6.09 

11 3.91 4.37 4.37 5.63 

12 4.22 4.68 4.68 5.32 

13 3.60 2.71 3.60 6.40 

14 4.09 3.21 4.09 5.91 

15 4.42 3.54 4.42 5.58 

16 2.38 1.50 1.50 8.50 

17 2.69 1.81 1.81 8.19 

18 2.89 2.00 2.00 8.00 

19 3.59 2.68 3.59 6.41 

20 4.08 3.17 4.08 5.92 

21 4.41 3.50 4.41 5.59 

22 2.32 1.42 1.42 8.58 

23 2.63 1.72 1.72 8.28 

24 2.82 1.91 1.91 8.09 

25 2.86 1.21 2.86 7.14 

26 3.23 1.58 3.23 6.77 

27 3.47 1.82 3.47 6.53 

28 1.97 0.31 0.31 9.69 

29 2.23 0.58 0.58 9.42 

30 2.40 0.74 0.74 9.26 

31 2.88 1.22 2.88 7.12 
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32 3.25 1.59 3.25 6.75 

33 3.49 1.83 3.49 6.51 

34 1.92 0.26 0.26 9.74 

35 2.17 0.51 0.51 9.49 

36 2.34 0.68 0.68 9.32 
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Table S7. Metric 4 - UGR extension for small sources (CIE146-147 2002) 
Equation Unified Glare Rating (UGRs) small source extension 

���� = ����∙ [
�.��

��
∙ ∑

���∙��

����
]       

Components of the equation Lb is the background luminance, in cd/m2;  
I is the luminous intensity, in cd; 
p is the Guth position index for each luminaire (displacement from the line of sight);  
r is the distance from the observer to the center of the luminous parts of the luminaire, in m. 

Subjective scale (Mistrick and Choi 1999) 
10 – imperceptible 
16 – perceptible 
19 – just acceptable 
22 – unacceptable 
25 – just uncomfortable 
28 – uncomfortable 
31 – just intolerable  

Validity/limitations Restricted to sources more than 5 degrees off the line of sight, at interior lighting distances. 
For the UGR small extension – projected area of 0.005 m2 is accepted. 
Glare from small sources is determined by their intensity (I) towards the eye.  

 
Equation parameters and calculations in table S8 
 
Lb, cd/m2 is the measured background luminance created by the source above the subject’s head. It was averaged for the 

measurements taken during 4/11/2015-5/16/2015. 
R, m is the measured distance between the glare source and the subject’s eyes. 
A, m2 is the area of the glare source that was calculated from the measured diameter. 
Ll, cd/m2 is the measured luminance of the glare source at both positions 0˚ and 10˚. It was averaged for the measurements 

taken during 4/11/2015-5/16/2015. 
I, cd is the calculated luminous intensity of the glare source towards the eyes based on the actual luminance and area. 
P is the position index acquired from the CIE 117-1995 technical report. It was interpolated for the glare source position of 

10˚. 
UGRs is the calculated discomfort glare as predicted by the UGR small extension equation. Some values exceed predefined 

maximum of the scale (30). 
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Table S8. Calculations of discomfort glare using the UGR small source extension 

Condition 
(scenario) # 

Lb, cd/m^2 R, m A, m^2 Lls, cd/m^2 
I 

(calculated), 
cd 

Position 
index 

UGRs 

1 0.037 0.997 0.000010 20,477 0.20 1 14.0 

2 0.344 0.997 0.000010 20,477 0.20 1 6.3 

3 1.156 0.997 0.000010 20,477 0.20 1 2.1 

4 0.037 0.997 0.000100 20,477 2.05 1 30.0 

5 0.344 0.997 0.000100 20,477 2.05 1 22.3 

6 1.156 0.997 0.000100 20,477 2.05 1 18.1 

7 0.037 0.997 0.000010 23,460 0.23 1.467 12.3 

8 0.344 0.997 0.000010 23,460 0.23 1.467 4.6 

9 1.156 0.997 0.000010 23,460 0.23 1.467 0.4 

10 0.037 0.997 0.000100 23,460 2.35 1.467 28.3 

11 0.344 0.997 0.000100 23,460 2.35 1.467 20.6 

12 1.156 0.997 0.000100 23,460 2.35 1.467 16.4 

13 0.037 0.997 0.000010 213,417 2.14 1 30.3 

14 0.344 0.997 0.000010 213,417 2.14 1 22.6 

15 1.156 0.997 0.000010 213,417 2.14 1 18.4 

16 0.037 0.997 0.000100 213,417 21.37 1 46.3 

17 0.344 0.997 0.000100 213,417 21.37 1 38.6 

18 1.156 0.997 0.000100 213,417 21.37 1 34.4 

19 0.037 0.997 0.000010 221,580 2.22 1.467 27.9 

20 0.344 0.997 0.000010 221,580 2.22 1.467 20.2 

21 1.156 0.997 0.000010 221,580 2.22 1.467 16.0 

22 0.037 0.997 0.000100 221,580 22.18 1.467 43.9 

23 0.344 0.997 0.000100 221,580 22.18 1.467 36.2 

24 1.156 0.997 0.000100 221,580 22.18 1.467 32.0 

25 0.037 0.997 0.000010 760,733 7.61 1 39.1 
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26 0.344 0.997 0.000010 760,733 7.61 1 31.4 

27 1.156 0.997 0.000010 760,733 7.61 1 27.2 

28 0.037 0.997 0.000100 760,733 76.16 1 55.1 

29 0.344 0.997 0.000100 760,733 76.16 1 47.4 

30 1.156 0.997 0.000100 760,733 76.16 1 43.2 

31 0.037 0.997 0.000010 766,440 7.67 1.467 36.5 

32 0.344 0.997 0.000010 766,440 7.67 1.467 28.8 

33 1.156 0.997 0.000010 766,440 7.67 1.467 24.6 

34 0.037 0.997 0.000100 766,440 76.73 1.467 52.5 

35 0.344 0.997 0.000100 766,440 76.73 1.467 44.8 

36 1.156 0.997 0.000100 766,440 76.73 1.467 40.6 
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Appendix T - SAS Command File for the Correlation analysis of four 
applicable metrics with Subjective Responses collected in this study 
The output file is not printed here due to its large size. 

data BESTm; 
Input condition subj1-subj47 metric1 metric2 metric3 metric4; 
/*EXCLUDED 9 subjects (problematic eye tracking data) 
  
  metric 1 – the outdoor sports and area lighting 10-90; 
  metric 2 – the motor vehicle lighting INVERTED 1(min)-9(max); 
  metric 3 - Bullough's et al. combo of 2008&2011 INVERTED 1(min)-9(max) ; 
  metric 4 – the UGR small source extension 10-30*/ 
Cards; 
1 1 1 1 2 1 1 0 1 0 0 1 2
 1 1 1 3 3 1 2 2 0 1 1 1
 2 2 1 0 2 1 2 2 2 1 2 1
 1 2 3 0 0 0 3 2 2 3 1 179
 7.9 4.1 14.0 
2 1 0 1 1 0 1 0 1 1 0 0 0
 0 0 1 3 1 1 1 2 0 1 1 1
 0 1 2 0 2 0 2 2 0 1 2 2
 0 1 2 1 1 0 0 2 1 1 0 158
 7.3 2.7 6.3 
3 0 1 0 2 1 1 1 1 0 0 2 1
 2 1 1 2 1 0 0 1 0 0 1 0
 0 1 2 0 2 0 1 2 0 1 1 1
 3 1 3 0 1 0 1 2 1 2 0 147
 6.8 1.5 2.1 
4 5 3 5 3 3 3 3 3 3 3 2 4
 3 3 3 5 6 5 5 4 3 3 4 4
 3 3 4 3 3 2 3 4 5 4 3 4
 4 3 4 3 4 4 3 1 3 3 1 205
 10.0 5.9 30.0 
5 4 4 3 3 2 2 4 4 2 0 2 3
 2 3 3 3 4 3 3 3 2 2 3 3
 4 2 3 0 3 1 3 4 2 3 2 3
 3 2 5 2 3 1 3 1 1 2 1 184
 9.4 5.4 22.3 
6 5 3 3 3 1 2 2 3 3 0 1 4
 2 4 2 3 3 2 3 4 2 2 2 2
 5 2 4 0 3 1 2 3 2 4 2 4
 3 2 4 2 2 0 2 1 1 2 1 173
 9.0 5.1 18.1 
7 1 2 1 1 0 1 1 3 2 0 1 2
 1 1 1 2 2 1 4 2 0 3 1 1
 2 1 3 0 3 0 2 2 0 1 2 2
 1 2 3 2 1 0 0 2 2 2 1 49
 5.5 4.4 12.3 
8 1 2 2 0 0 1 0 3 1 0 1 0
 0 0 1 2 1 2 2 2 0 2 1 0
 2 0 1 0 3 0 2 3 1 1 1 2
 1 1 3 1 2 0 0 1 1 1 1 28
 4.9 3.3 4.6 
9 0 1 0 1 0 1 0 1 1 0 0 0
 0 0 1 2 1 1 1 2 0 1 0 1
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 1 0 2 0 2 0 0 2 0 1 1 1
 0 1 2 0 2 0 1 1 0 1 0 17
 4.5 2.3 0.4 
10 2 2 3 2 1 3 4 4 5 1 3 3
 3 3 2 4 3 2 5 3 2 3 1 2
 4 3 4 0 3 1 3 4 5 2 3 3
 2 3 4 3 3 1 3 3 4 3 3 74
 7.7 6.1 28.3 
11 5 3 2 2 2 3 2 2 3 0 3 2
 3 3 2 4 2 2 4 4 2 4 1 3
 3 2 3 0 3 1 1 3 4 1 3 3
 2 3 5 3 3 0 3 2 3 2 2 54
 7.1 5.6 20.6 
12 2 2 1 2 2 3 0 2 2 0 3 0
 1 2 1 3 1 3 1 2 1 4 1 1
 2 1 3 0 3 0 3 3 2 2 2 3
 1 2 4 2 3 1 2 2 2 2 2 42
 6.6 5.3 16.4 
13 4 4 2 1 3 3 1 1 4 0 4 4
 2 3 2 4 5 3 4 4 2 3 3 3
 5 1 4 2 3 3 4 4 6 2 4 3
 4 4 5 2 1 0 0 4 3 4 2 205
 10.0 6.4 30.3 
14 4 3 3 3 4 3 2 3 4 0 2 3
 2 1 3 4 5 2 4 3 3 3 2 2
 3 1 3 0 3 1 3 4 3 2 2 2
 2 2 3 1 2 0 2 3 3 4 3 184
 9.4 5.9 22.6 
15 3 4 1 4 3 2 0 1 2 0 3 1
 3 0 1 3 2 3 5 2 1 2 2 2
 2 1 2 0 3 3 3 3 2 1 2 2
 2 3 4 1 1 0 3 2 3 4 1 173
 9.0 5.6 18.4 
16 6 6 6 5 6 4 6 6 6 4 5 6
 6 5 6 5 6 6 6 6 5 6 5 6
 6 5 5 6 5 6 6 6 6 5 6 6
 6 5 6 5 4 5 6 4 6 5 6 231
 12.2 8.5 46.3 
17 6 6 6 5 5 5 5 5 5 4 6 5
 4 5 4 5 6 6 5 6 4 6 5 4
 5 3 6 4 5 5 6 6 6 5 5 6
 5 4 6 5 4 2 4 6 5 5 5 210
 11.6 8.2 38.6 
18 6 5 5 4 5 4 6 4 5 2 4 6
 5 4 4 4 5 6 5 6 4 4 5 5
 5 5 6 3 4 5 6 5 4 5 4 5
 5 5 6 3 4 2 4 5 3 5 5 199
 11.1 8.0 34.4 
19 4 3 2 2 2 2 2 4 3 0 3 3
 2 5 4 3 4 3 5 3 2 3 1 4
 5 4 2 1 4 0 4 3 3 2 3 5
 1 2 5 2 2 3 3 2 4 4 3 72
 7.5 6.4 27.9 
20 3 3 2 2 2 2 1 2 3 0 2 2
 3 2 2 4 1 2 3 1 2 4 1 2
 4 2 3 1 3 2 3 3 0 1 3 3
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 2 2 3 3 3 1 0 3 2 3 3 51
 6.9 5.9 20.2 
21 0 2 3 2 2 1 0 2 0 0 1 3
 3 2 2 2 1 0 3 3 1 1 1 0
 1 2 3 0 3 0 4 3 0 2 2 3
 3 2 3 2 2 1 0 2 3 3 2 40
 6.4 5.6 16.0 
22 5 5 5 4 4 3 5 5 6 4 4 5
 5 6 4 5 5 5 6 5 5 5 2 4
 6 3 5 6 5 5 4 5 6 4 5 6
 4 4 6 5 4 5 1 3 5 6 5 98
 9.6 8.6 43.9 
23 3 4 4 3 4 2 4 3 4 4 5 3
 4 6 3 4 5 4 6 5 4 5 2 5
 5 5 5 5 4 3 5 5 6 4 4 5
 2 3 6 4 4 3 3 4 5 3 4 77
 9.0 8.3 36.2 
24 4 3 4 3 4 3 4 4 2 2 3 4
 4 5 3 4 4 4 4 4 4 4 2 3
 4 4 5 4 5 4 3 4 5 4 4 5
 2 3 5 3 4 3 4 4 3 4 5 65
 8.6 8.1 32.0 
25 5 4 5 4 4 3 5 2 5 4 5 6
 4 5 3 5 6 5 5 4 4 3 4 4
 5 4 5 2 5 2 6 6 5 3 4 3
 5 4 5 4 4 3 5 5 4 6 3 218
 11.1 7.1 39.1 
26 4 4 3 4 3 4 2 2 4 2 5 5
 4 3 3 5 2 3 5 5 2 2 3 3
 4 3 5 5 4 3 5 4 4 4 4 4
 5 4 5 3 2 3 0 4 4 5 4 197
 10.5 6.8 31.4 
27 4 4 3 4 5 2 2 2 0 0 3 3
 4 3 3 5 4 4 5 3 2 2 3 1
 4 2 5 2 3 4 4 4 4 2 3 4
 4 5 6 3 3 0 3 2 3 4 3 186
 10.1 6.5 27.2 
28 6 6 6 6 6 6 6 6 5 6 6 6
 6 6 6 6 6 6 6 6 6 6 6 6
 6 6 6 6 6 6 6 6 6 6 6 6
 6 6 6 6 6 6 6 5 6 6 6 244
 13.3 9.7 55.1 
29 6 6 6 6 6 5 6 5 6 4 6 6
 6 6 6 5 6 5 6 6 6 6 6 6
 6 6 6 6 6 6 6 6 6 6 6 6
 6 6 6 6 6 6 6 6 5 5 6 223
 12.7 9.4 47.4 
30 6 5 6 6 6 6 5 4 6 5 5 6
 6 6 6 5 5 5 6 6 6 6 5 5
 6 5 6 5 6 5 6 6 6 6 6 6
 6 6 6 5 5 5 4 6 6 6 6 212
 12.3 9.3 43.2 
31 2 4 4 3 3 2 2 5 4 4 4 4
 4 4 3 5 4 4 5 4 4 5 2 4
 5 4 3 4 4 3 5 6 4 3 4 4
 3 4 5 3 3 3 3 3 5 5 4 85
 8.5 7.1 36.5 
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32 3 3 4 2 3 2 5 4 2 3 5 2
 4 3 5 4 2 4 5 4 3 5 1 4
 3 2 4 4 4 2 4 4 4 3 3 4
 4 2 6 2 3 1 1 3 4 4 3 64
 7.9 6.8 28.8 
33 2 3 2 3 2 2 3 4 2 2 4 2
 4 2 2 4 2 4 4 4 3 4 1 2
 3 2 3 1 3 1 2 4 4 2 3 4
 3 3 5 3 3 2 2 2 3 3 2 53
 7.5 6.5 24.6 
34 6 6 5 5 6 4 6 6 6 6 6 6
 5 6 5 6 5 4 6 6 5 6 4 4
 6 5 5 6 6 6 6 6 6 5 6 6
 6 6 6 6 5 6 5 5 6 6 6 111
 10.7 9.7 52.5 
35 6 5 6 5 6 4 6 6 6 6 6 5
 6 6 5 5 6 5 6 6 5 6 4 4
 6 4 5 6 5 5 6 6 5 4 5 5
 5 6 6 5 5 6 5 5 5 5 6 90
 10.1 9.5 44.8 
36 5 4 4 4 5 4 6 5 4 6 5 5
 6 6 5 5 5 6 6 5 4 5 4 4
 5 4 5 6 5 5 5 5 5 5 4 6
 5 4 6 4 4 5 0 4 5 5 5 78
 9.7 9.3 40.6 
;; 
proc print data=BESTm; 
run; 
 
/*This computes Pearson correlation coefficients and z-transformed 
correlation coefficients (so that the coefficients 
are not skewed)."*/ 
  
proc corr data=BESTm outp = newdataset Fisher(biasadj=no); 
var subj1-subj47; 
with metric1 metric2 metric3 metric4; 
run; 
 
proc print data=newdataset; 
run; 
 
/*This procedure gives names to the columns without names in the new 
dataset.*/ 
data temp; 
set newdataset; 
if _TYPE_ = 'MEAN' then _NAME_ = 'mean'; 
if _TYPE_ = 'STD' then _NAME_ = 'STD'; 
if _TYPE_ = 'N' then _NAME_ = 'n'; 
run; 
 
/*It transposes the data*/ 
proc transpose data=temp out=transpose; 
run; 
 
/*It calculates the Fisher's z transformation.*/ 
data transpose; 
set transpose; 
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metricz1 = .5*log((1+metric1)/(1-metric1)); 
metricz2 = .5*log((1+metric2)/(1-metric2)); 
metricz3 = .5*log((1+metric3)/(1-metric3)); 
metricz4 = .5*log((1+metric4)/(1-metric4)); 
run; 
proc print data=transpose; 
run; 
 
 
/*Now the correlation coefficients can be analyzed just like in the repeated-
measures design. The means between the metrics can be compared, it can be 
determined whether they are significantly different from each other. One can 
do glm, univariate, or compute all possible differences to see if any of the 
differences are statistically significant from 0.*/ 
 
proc glm data=transpose; 
model metricz1 metricz2 metricz3 metricz4 = /nouni; 
repeated metric 4 polynomial/nom summary; 
run; 
 
/*Diffirences (diff) just like w, that is why they are divided by the sqrt of 
2. */ 
data transpose; 
set transpose; 
diff12=(metricz1-metricz2)/2**.5; 
diff23=(metricz2-metricz3)/2**.5; 
diff31=(metricz3-metricz1)/2**.5; 
diff41=(metricz4-metricz1)/2**.5; 
diff42=(metricz4-metricz2)/2**.5; 
diff43=(metricz4-metricz3)/2**.5; 
run; 
proc univariate data=transpose; 
var diff12 diff23 diff31 diff41 diff42 diff43; 
run; 
 
proc print data=transpose; 
run; 
 
proc glm data=transpose; 
model metricz1 metricz2 metricz3 metricz4= /nouni; 
repeated metric 4 polynomial/nom summary; 
run; 
proc univariate data=transpose; 
var diff12 diff23 diff31 diff41 diff42 diff43; 
run; 
proc means data=transpose; 
var metricz1 metricz2 metricz3 metricz4; 
output out=means; 
run; 
/*Conversion back to the original metrics*/ 
data means; 
set means; 
if _STAT_ = 'MEAN'; 
orig1 = ((exp(1)**(metricz1*2)-1)/(exp(1)**(metricz1*2)+1)); 
orig2 = ((exp(1)**(metricz2*2)-1)/(exp(1)**(metricz2*2)+1)); 
orig3 = ((exp(1)**(metricz3*2)-1)/(exp(1)**(metricz3*2)+1)); 
orig4 = ((exp(1)**(metricz4*2)-1)/(exp(1)**(metricz4*2)+1)); 
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run; 
 
proc print data=means; 
run; 
 
/*It transposes the data*/ 
proc transpose data=means out=meanstranspose; 
run; 
 
proc print data=meanstranspose; 
run; 
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Appendix U - SAS Command File for Relative Pupil Size Analysis  
The output file is not printed here due to its large size. 

 
/*This file calculates the repeated-measures ANOVA on the relative pupil 
size.*/ 
 
data MAIN; 
Input newsubjid a1-a36; 
/*newsubjid is the new assigned ID as if there were no excluded subjects, one 
line for one subject 
a1-a36 are the relative pupil diameters for conditions 1-36*/ 
/*EXCLUDED 9 subjects (problematic eye tracking data)*/ 
 
lumin1 = mean (of a1-a12); /*computes mean of all conditions with luminance 1 
(20,000)*/ 
lumin2 = mean (of a13-a24); /*computes mean of all conditions with luminance 
2 (205,000)*/ 
lumin3 = mean (of a25-a36); /*computes mean of all conditions with luminance 
3 (750,000)*/ 
 
posit1 = mean (a1, a2, a3, a4,a5, a6,a13, a14, a15, a16, a17, a18, a25, a26, 
a27, a28,a29, a30); 
/*computes mean of all conditions with position 1 (0)*/ 
posit2 = mean (a7, a8, a9, a10, a11, a12, a19, a20, a21, a22, a23, a24, a31, 
a32, a33, a34, a35, a36); 
/*computes mean of all conditions with position 2 (10)*/ 
 
solid1 = mean (a1, a2, a3,a7, a8, a9, a13, a14, a15, a19, a20, a21, a25, a26, 
a27, a31, a32, a33); 
/*computes mean of all conditions with solid 1 (10^-5 sr)*/ 
solid2 = mean (a4, a5, a6,a10, a11, a12, a16, a17, a18, a22, a23, a24, a28, 
a29, a30, a34, a35, a36); 
/*computes mean of all conditions with solid 2 (10^-4 sr)*/ 
 
backs1 = mean (a1, a4, a7, a10, a13, a16, a19, a22, a25, a28, a31, a34); 
/*computes mean of all conditions with background luminance 1 (0.03)*/ 
backs2 = mean (a2, a5, a8, a11, a14, a17, a20, a23, a26, a29, a32, a35); 
/*computes mean of all conditions with background luminance 2 (0.3)*/ 
backs3 = mean (a3, a6, a9, a12, a15, a18, a21, a24, a27, a30, a33, a36);  
/*computes mean of all conditions with background luminance 3 (1)*/ 
 
lumin1pos1 = mean(a1, a2, a3, a4, a5, a6); /*computes mean of all conditions 
with luminance 1 & position1*/ 
lumin1pos2 = mean(a7, a8, a9, a10, a11, a12); 
lumin2pos1 = mean(a13, a14, a15, a16, a17, a18); 
lumin2pos2 = mean(a19, a20, a21, a22, a23, a24); 
lumin3pos1 = mean(a25, a26, a27, a28, a29, a30); 
lumin3pos2 = mean(a31, a32, a33, a34, a35, a36); 
 
lumin1sol1 = mean (a1, a2, a3, a7, a8, a9);  
lumin1sol2 = mean (a4, a5, a6, a10, a11, a12); 
lumin2sol1 = mean (a13, a14, a15, a19, a20, a21); 
lumin2sol2 = mean (a16, a17, a18, a22, a23, a24); 
lumin3sol1 = mean (a25, a26, a27, a31, a32, a33); 
lumin3sol2 = mean (a28, a29, a30, a34, a35, a36); 
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lumin1backs1 = mean (a1, a4, a7, a10); 
lumin1backs2 = mean (a2, a5,a8, a11); 
lumin1backs3 = mean (a3, a6, a9, a12); 
lumin2backs1 = mean (a13, a16, a19, a22); 
lumin2backs2 = mean (a14, a17, a20, a23); 
lumin2backs3 = mean (a15, a18, a21, a24); 
lumin3backs1 = mean (a25, a28, a31, a34); 
lumin3backs2 = mean (a26, a29, a32, a35); 
lumin3backs3 = mean (a27, a30, a33, a36); 
 
pos1sol1 = mean (a1, a2, a3, a13, a14, a15, a25, a26, a27); 
pos1sol2 = mean (a4, a5, a6, a16, a17, a18, a28, a29, a30); 
pos2sol1 = mean (a7, a8, a9, a19, a20, a21, a31, a32, a33); 
pos2sol2 = mean (a10, a11, a12, a22, a23, a24, a34, a35, a36); 
 
pos1backs1 = mean (a1, a4, a13, a16, a25, a28); 
pos1backs2 = mean (a2, a5, a14, a17, a26, a29); 
pos1backs3 = mean (a3, a6, a15, a18, a27, a30); 
pos2backs1 = mean (a7, a10, a19, a22, a31,a34); 
pos2backs2 = mean (a8, a11, a20, a23, a32, a35); 
pos2backs3 = mean (a9, a12, a21, a24, a33, a36); 
 
sol1backs1 = mean (a1, a7, a13, a19, a25, a31); 
sol1backs2 = mean (a2, a8, a14, a20, a26, a32); 
sol1backs3 = mean (a3, a9, a15, a21, a27, a33); 
sol2backs1 = mean (a4, a10, a16, a22, a28, a34); 
sol2backs2 = mean (a5, a11, a17, a23, a29, a35); 
sol2backs3 = mean (a6, a12, a18, a24, a30, a36); 
 
Cards; 
1 0.273 0.255 0.280 0.336 0.237 0.350 0.228 0.172 0.117 0.397 0.302 0.295
 0.477 0.453 0.379 0.439 0.346 0.464 0.393 0.262 0.234 0.315 0.424 0.357
 0.387 0.447 0.436 0.493 0.477 0.489 0.436 0.358 0.252 0.488 0.352 0.442 
2 0.374 0.301 0.290 0.477 0.423 0.360 0.285 0.283 0.173 0.425 0.347 0.275
 0.414 0.392 0.330 0.506 0.463 0.437 0.402 0.330 0.320 0.496 0.469 0.402
 0.475 0.412 0.380 0.509 0.467 0.444 0.496 0.431 0.305 0.554 0.446 0.472 
3 0.360 0.194 0.217 0.529 0.408 0.259 0.318 0.200 0.096 0.480 0.290 0.239
 0.508 0.400 0.328 0.558 0.387 0.385 0.421 0.374 0.305 0.483 0.375 0.393
 0.529 0.400 0.277 0.559 0.451 0.389 0.508 0.397 0.375 0.542 0.505 0.368 
4 0.267 0.253 0.113 0.421 0.248 0.251 0.198 0.052 0.061 0.330 0.206 0.155
 0.403 0.266 0.219 0.475 0.378 0.299 0.303 0.213 0.149 0.450 0.336 0.256
 0.419 0.354 0.303 0.477 0.417 0.390 0.365 0.298 0.169 0.518 0.442 0.355 
5 0.311 0.210 0.201 0.388 0.343 0.227 0.180 0.092 0.073 0.355 0.221 0.148
 0.378 0.276 0.205 0.441 0.399 0.322 0.357 0.304 0.140 0.488 0.328 0.330
 0.489 0.337 0.277 0.478 0.447 0.316 0.439 0.277 0.252 0.456 0.435 0.372 
6 0.208 0.300 0.103 0.396 0.365 0.236 0.233 0.062 -0.544 0.356 0.179
 0.210 0.413 0.292 0.284 0.505 0.492 0.401 0.333 0.261 0.223 0.364 0.467
 0.306 0.513 0.347 0.367 0.616 0.413 0.454 0.372 0.240 0.107 0.479 0.288
 0.399 
7 0.350 0.173 0.282 0.468 0.393 0.264 0.332 0.156 0.059 0.460 0.315 0.220
 0.478 0.403 0.143 0.461 0.457 0.341 0.380 0.213 0.143 0.527 0.431 0.401
 0.503 0.318 0.364 0.539 0.526 0.395 0.430 0.216 0.221 0.533 0.417 0.313 
8 0.273 0.290 0.263 0.411 0.397 0.285 0.211 0.181 0.130 0.358 0.300 0.294
 0.458 0.347 0.359 0.540 0.449 0.331 0.411 0.246 0.206 0.509 0.384 0.450
 0.475 0.392 0.313 0.560 0.471 0.404 0.460 0.387 0.336 0.548 0.476 0.405 
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9 0.424 0.284 0.237 0.446 0.393 0.306 0.262 0.160 0.128 0.446 0.286 0.312
 0.377 0.398 0.273 0.572 0.453 0.301 0.381 0.304 0.361 0.489 0.376 0.333
 0.507 0.400 0.357 0.456 0.361 0.364 0.504 0.365 0.295 0.442 0.452 0.387 
10 0.368 0.297 0.307 0.399 0.307 0.224 0.171 0.160 0.148 0.320 0.370 0.283
 0.440 0.368 0.305 0.373 0.289 0.308 0.338 0.296 0.201 0.386 0.364 0.258
 0.402 0.213 0.267 0.535 0.300 0.264 0.442 0.208 0.054 0.491 0.438 0.339 
11 0.369 0.254 0.174 0.547 0.442 0.306 0.175 0.064 0.057 0.479 0.300 0.175
 0.474 0.255 0.322 0.593 0.444 0.409 0.395 0.176 0.193 0.516 0.441 0.212
 0.447 0.453 0.306 0.484 0.540 0.452 0.478 0.364 0.362 0.590 0.468 0.235 
12 0.409 0.365 0.283 0.487 0.414 0.269 0.273 0.073 0.112 0.502 0.311 0.270
 0.490 0.459 0.250 0.571 0.511 0.403 0.487 0.372 0.282 0.546 0.411 0.432
 0.536 0.450 0.391 0.544 0.538 0.397 0.433 0.393 0.199 0.562 0.500 0.489 
13 0.513 0.449 0.330 0.542 0.479 0.294 0.423 0.149 0.204 0.486 0.313 0.208
 0.467 0.479 0.277 0.594 0.456 0.466 0.467 0.463 0.292 0.564 0.511 0.382
 0.533 0.488 0.369 0.568 0.434 0.488 0.534 0.321 0.443 0.491 0.535 0.289 
14 0.385 0.282 0.229 0.392 0.316 0.259 0.301 0.169 0.252 0.434 0.185 0.214
 0.507 0.318 0.240 0.562 0.562 0.330 0.398 0.357 0.344 0.550 0.420 0.342
 0.526 0.381 0.449 0.564 0.590 0.435 0.466 0.425 0.306 0.561 0.523 0.437 
15 0.374 0.276 0.149 0.450 0.365 0.260 0.259 0.225 0.086 0.354 0.331 0.196
 0.456 0.340 0.341 0.484 0.462 0.400 0.330 0.354 0.255 0.475 0.431 0.356
 0.476 0.379 0.337 0.492 0.436 0.450 0.432 0.304 0.310 0.515 0.430 0.393 
16 0.481 0.354 0.292 0.459 0.469 0.349 0.294 0.195 0.194 0.467 0.215 0.320
 0.439 0.306 0.272 0.549 0.443 0.455 0.442 0.351 0.203 0.523 0.264 0.252
 0.565 0.438 0.350 0.508 0.398 0.430 0.456 0.306 0.347 0.478 0.433 0.409 
17 0.317 0.211 0.230 0.403 0.327 0.287 0.257 0.141 0.181 0.438 0.205 0.181
 0.386 0.348 0.164 0.455 0.384 0.277 0.327 0.277 0.136 0.409 0.393 0.235
 0.396 0.378 0.275 0.438 0.344 0.356 0.450 0.236 0.307 0.551 0.358 0.266 
18 0.373 0.261 0.200 0.459 0.381 0.272 0.250 0.149 0.155 0.365 0.219 0.195
 0.453 0.316 0.181 0.517 0.401 0.361 0.328 0.389 0.178 0.442 0.314 0.316
 0.511 0.382 0.387 0.509 0.453 0.357 0.373 0.273 0.248 0.465 0.347 0.302 
19 0.472 0.447 0.452 0.512 0.532 0.464 0.158 0.307 0.234 0.417 0.278 0.174
 0.496 0.544 0.477 0.550 0.551 0.419 0.424 0.408 0.324 0.530 0.537 0.457
 0.579 0.553 0.558 0.576 0.508 0.568 0.505 0.362 0.189 0.540 0.564 0.371 
20 0.464 0.385 0.271 0.418 0.440 0.326 0.400 0.196 0.141 0.466 0.231 0.181
 0.455 0.333 0.258 0.480 0.446 0.416 0.425 0.318 0.257 0.523 0.411 0.347
 0.522 0.412 0.303 0.519 0.395 0.374 0.438 0.388 0.280 0.552 0.454 0.399 
21 0.446 0.360 0.300 0.511 0.355 0.250 0.382 0.158 0.066 0.417 0.390 0.338
 0.444 0.471 0.296 0.505 0.374 0.396 0.390 0.338 0.286 0.428 0.369 0.312
 0.478 0.358 0.343 0.488 0.483 0.413 0.512 0.337 0.302 0.437 0.450 0.449 
22 0.362 0.238 0.269 0.533 0.378 0.404 0.245 0.207 0.019 0.298 0.228 0.294
 0.507 0.484 0.314 0.563 0.549 0.504 0.430 0.315 0.192 0.529 0.475 0.362
 0.534 0.469 0.324 0.586 0.459 0.492 0.513 0.350 0.172 0.569 0.465 0.443 
23 0.306 0.249 0.231 0.372 0.308 0.306 0.257 0.073 0.089 0.393 0.323 0.207
 0.446 0.392 0.303 0.531 0.377 0.337 0.371 0.213 0.229 0.477 0.322 0.309
 0.437 0.346 0.377 0.455 0.335 0.367 0.341 0.255 0.284 0.447 0.413 0.335 
24 0.265 0.132 0.207 0.303 0.290 0.273 0.174 0.049 0.052 0.348 0.217 0.170
 0.414 0.299 0.194 0.432 0.395 0.327 0.351 0.194 0.184 0.472 0.351 0.253
 0.421 0.237 0.299 0.445 0.378 0.344 0.376 0.299 0.115 0.491 0.411 0.336 
25 0.328 0.263 0.192 0.425 0.335 0.341 0.262 0.155 0.209 0.396 0.325 0.217
 0.427 0.349 0.275 0.451 0.368 0.310 0.379 0.335 0.267 0.480 0.265 0.381
 0.458 0.390 0.330 0.487 0.433 0.366 0.423 0.373 0.286 0.478 0.394 0.333 
26 0.444 0.381 0.255 0.451 0.350 0.335 0.268 0.090 0.152 0.423 0.431 0.330
 0.546 0.455 0.384 0.547 0.465 0.417 0.348 0.267 0.273 0.545 0.545 0.420
 0.555 0.493 0.479 0.508 0.439 0.458 0.513 0.406 0.363 0.541 0.489 0.531 
27 0.328 0.282 0.266 0.340 0.359 0.283 0.223 0.133 0.124 0.321 0.217 0.155
 0.372 0.257 0.276 0.397 0.396 0.328 0.282 0.167 0.189 0.382 0.340 0.294
 0.387 0.329 0.317 0.454 0.427 0.321 0.380 0.285 0.222 0.447 0.423 0.309 
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28 0.389 0.381 0.356 0.516 0.481 0.262 0.275 0.280 0.239 0.412 0.392 0.285
 0.466 0.436 0.344 0.511 0.505 0.481 0.423 0.398 0.325 0.451 0.481 0.340
 0.554 0.436 0.393 0.532 0.531 0.513 0.444 0.411 0.306 0.507 0.471 0.378 
29 0.357 0.250 0.277 0.472 0.392 0.310 0.254 0.219 0.144 0.362 0.326 0.204
 0.455 0.333 0.278 0.464 0.393 0.317 0.399 0.313 0.241 0.468 0.393 0.358
 0.449 0.443 0.290 0.514 0.472 0.425 0.472 0.378 0.310 0.453 0.422 0.306 
30 0.244 0.167 0.155 0.386 0.240 0.037 0.465 0.433 0.216 0.267 0.441 0.147
 0.327 0.279 0.231 0.430 0.357 0.360 0.322 0.145 0.340 0.285 0.328 0.472
 0.388 0.387 0.279 0.221 0.187 0.235 0.200 0.090 0.418 0.229 0.112 0.133 
31 0.425 0.391 0.329 0.517 0.499 0.387 0.292 0.226 0.112 0.411 0.331 0.274
 0.479 0.387 0.397 0.538 0.489 0.487 0.451 0.318 0.249 0.540 0.452 0.368
 0.487 0.424 0.484 0.562 0.492 0.463 0.450 0.336 0.280 0.547 0.427 0.448 
32 0.329 0.285 0.179 0.451 0.402 0.286 0.229 0.137 0.080 0.359 0.279 0.253
 0.430 0.356 0.329 0.508 0.474 0.425 0.359 0.289 0.227 0.485 0.409 0.314
 0.470 0.420 0.360 0.514 0.501 0.452 0.417 0.393 0.309 0.548 0.494 0.444 
33 0.387 0.383 0.267 0.453 0.419 0.376 0.318 0.263 0.268 0.390 0.199 0.239
 0.335 0.416 0.228 0.519 0.422 0.388 0.433 0.259 0.264 0.475 0.419 0.283
 0.454 0.418 0.242 0.509 0.395 0.487 0.492 0.274 0.329 0.477 0.456 0.484 
34 0.311 0.199 0.161 0.356 0.279 0.302 0.188 0.080 0.078 0.316 0.230 0.147
 0.364 0.320 0.233 0.399 0.367 0.277 0.290 0.214 0.151 0.409 0.315 0.273
 0.351 0.328 0.237 0.438 0.382 0.333 0.352 0.237 0.206 0.451 0.367 0.347 
35 0.352 0.235 -0.035 0.380 0.320 0.135 0.304 0.163 0.061 0.391 0.221
 0.137 0.387 0.380 0.298 0.415 0.393 0.397 0.488 0.401 0.145 0.440 0.351
 0.293 0.514 0.464 0.319 0.489 0.475 0.383 0.406 0.320 0.181 0.497 0.369
 0.427 
36 0.381 0.325 0.239 0.489 0.386 0.346 0.242 0.211 0.174 0.394 0.263 0.276
 0.457 0.361 0.333 0.524 0.491 0.473 0.442 0.235 0.289 0.505 0.446 0.279
 0.521 0.435 0.360 0.556 0.484 0.508 0.446 0.420 0.267 0.506 0.474 0.389 
37 0.366 0.480 0.356 0.385 0.455 0.525 0.410 0.242 0.279 0.343 0.370 0.321
 0.436 0.475 0.324 0.354 0.522 0.503 0.413 0.329 0.292 0.516 0.467 0.513
 0.436 0.482 0.457 0.404 0.429 0.437 0.470 0.419 0.337 0.449 0.500 0.512 
38 0.317 0.189 0.150 0.430 0.197 0.207 -0.031 0.168 -0.049 0.320
 0.230 0.090 0.410 0.245 0.164 0.550 0.358 0.147 0.299 0.165 0.151 0.512
 0.250 0.202 0.442 0.377 0.318 0.368 0.499 0.443 0.389 0.244 0.020 0.508
 0.337 0.236 
39 0.246 0.176 0.068 0.353 0.287 0.181 0.178 0.069 0.022 0.285 0.170 0.132
 0.283 0.295 0.216 0.254 0.242 0.225 0.220 0.189 0.118 0.278 0.268 0.269
 0.272 0.244 0.228 0.286 0.397 0.262 0.353 0.263 0.265 0.316 0.224 0.255 
40 0.439 0.329 0.273 0.465 0.387 0.333 0.311 0.091 0.079 0.404 0.291 0.234
 0.482 0.453 0.365 0.485 0.479 0.479 0.416 0.302 0.291 0.515 0.347 0.300
 0.517 0.429 0.355 0.498 0.429 0.515 0.443 0.440 0.143 0.484 0.535 0.470 
41 0.356 0.290 0.258 0.394 0.296 0.391 0.273 0.177 0.082 0.342 0.259 0.264
 0.372 0.289 0.233 0.493 0.379 0.432 0.357 0.267 0.082 0.475 0.391 0.324
 0.463 0.328 0.316 0.551 0.475 0.359 0.375 0.230 0.286 0.472 0.462 0.308 
42 0.378 0.280 0.203 0.440 0.308 0.316 0.262 0.185 0.131 0.396 0.271 0.223
 0.472 0.384 0.329 0.510 0.449 0.409 0.372 0.317 0.249 0.486 0.370 0.317
 0.502 0.421 0.375 0.540 0.408 0.438 0.430 0.352 0.227 0.469 0.415 0.362 
43 0.470 0.392 0.422 0.527 0.512 0.450 0.310 0.272 0.203 0.496 0.429 0.322
 0.514 0.465 0.393 0.528 0.521 0.480 0.481 0.414 0.325 0.540 0.472 0.396
 0.550 0.528 0.442 0.523 0.468 0.485 0.502 0.461 0.446 0.520 0.492 0.481 
44 0.316 0.227 0.205 0.427 0.306 0.223 0.275 0.212 0.107 0.388 0.300 0.228
 0.467 0.352 0.292 0.488 0.389 0.368 0.416 0.297 0.191 0.472 0.376 0.342
 0.486 0.375 0.350 0.558 0.460 0.358 0.411 0.389 0.247 0.505 0.437 0.395 
45 0.243 0.214 0.165 0.363 0.268 0.245 0.185 0.175 0.118 0.293 0.220 0.183
 0.349 0.317 0.267 0.483 0.414 0.349 0.318 0.208 0.132 0.426 0.368 0.232
 0.411 0.350 0.309 0.506 0.461 0.408 0.364 0.309 0.265 0.500 0.458 0.384 



www.manaraa.com

265 
 

46 0.458 0.328 0.414 0.535 0.553 0.349 0.253 0.343 0.372 0.386 0.430 0.385
 0.443 0.387 0.373 0.458 0.548 0.389 0.432 0.475 0.326 0.437 0.435 0.507
 0.515 0.455 0.384 0.528 0.454 0.493 0.360 0.522 0.322 0.403 0.409 0.574 
47 0.349 0.169 0.317 0.423 0.345 0.345 0.371 0.216 0.026 0.278 0.311 0.342
 0.353 0.325 0.320 0.476 0.480 0.356 0.375 0.307 0.210 0.398 0.327 0.313
 0.316 0.349 0.272 0.438 0.362 0.342 0.336 0.275 0.134 0.508 0.328 0.271 
;; 
 
proc print data=MAIN; 
run; 
proc means data = MAIN; 
var a1-a36; 
run; 
proc means data = MAIN; 
var  
lumin1 lumin2 lumin3 
posit1 posit2 
solid1 solid2 
backs1 backs2 backs3 
 
lumin1backs1 lumin2backs1 lumin3backs1  
lumin1backs2 lumin2backs2 lumin3backs2  
lumin1backs3 lumin2backs3 lumin3backs3 
 
lumin1pos1 lumin2pos1 lumin3pos1 lumin1pos2 lumin2pos2 lumin3pos2 
 
lumin1sol1 lumin1sol2 lumin2sol1 lumin2sol2 lumin3sol1 lumin3sol2 
 
pos1sol1 pos1sol2 pos2sol1 pos2sol2 
 
pos1backs1 pos1backs2 pos1backs3 pos2backs1 pos2backs2 pos2backs3  
 
sol1backs1 sol1backs2 sol1backs3 sol2backs1 sol2backs2 sol2backs3; 
run; 
 
/*It allows to check confidence interval - standard error*1.96=margin of 
error */ 
proc surveymeans data = MAIN; 
VAR 
lumin1 lumin2 lumin3 
posit1 posit2 
solid1 solid2 
backs1 backs2 backs3; 
run; 
 
/*If there are missing data, glm ignores the whole subject*/ 
proc glm data=MAIN; 
repeated luminance 3 polynomial, position 2 polynomial, solidangle 2 
polynomial, backgroundlum 3 polynomial/nom summary; 
run; 
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Appendix V - SAS Command File for Correlation Analysis between 
Subjective Responses and Relative Pupil Size 
The output file is not printed here due to its large size. 

/*Correlation between subjective data and RPS 
widePUPIL - wide dataset 
longPUPIl - long dataset*/ 
 
data widePUPIL; 
Input subjectID scale1-scale36 r1-r36; 
/*EACH line - for one subject;   
First line:  
Scale 1-36 subjective scale response of subject 1 for 36 conditions, rps 1-36 
relative pupil size for subject 1 
for 36 conditions*/ 
/*EXCLUDED 9 subjects*/ 
Cards; 
1 1 1 0 5 4 5 1 1 0 2 5 2
 4 4 3 6 6 6 4 3 0 5 3 4
 5 4 4 6 6 6 2 3 2 6 6 5
 0.273 0.255 0.280 0.336 0.237 0.350 0.228 0.172 0.117 0.397 0.302 0.295
 0.477 0.453 0.379 0.439 0.346 0.464 0.393 0.262 0.234 0.315 0.424 0.357
 0.387 0.447 0.436 0.493 0.477 0.489 0.436 0.358 0.252 0.488 0.352 0.442 
2 1 0 1 3 4 3 2 2 1 2 3 2
 4 3 4 6 6 5 3 3 2 5 4 3
 4 4 4 6 6 5 4 3 3 6 5 4
 0.374 0.301 0.290 0.477 0.423 0.360 0.285 0.283 0.173 0.425 0.347 0.275
 0.414 0.392 0.330 0.506 0.463 0.437 0.402 0.330 0.320 0.496 0.469 0.402
 0.475 0.412 0.380 0.509 0.467 0.444 0.496 0.431 0.305 0.554 0.446 0.472 
3 1 1 0 5 3 3 1 2 0 3 2 1
 2 3 1 6 6 5 2 2 3 5 4 4
 5 3 3 6 6 6 4 4 2 5 6 4
 0.360 0.194 0.217 0.529 0.408 0.259 0.318 0.200 0.096 0.480 0.290 0.239
 0.508 0.400 0.328 0.558 0.387 0.385 0.421 0.374 0.305 0.483 0.375 0.393
 0.529 0.400 0.277 0.559 0.451 0.389 0.508 0.397 0.375 0.542 0.505 0.368 
4 2 1 2 3 3 3 1 0 1 2 2 2
 1 3 4 5 5 4 2 2 2 4 3 3
 4 4 4 6 6 6 3 2 3 5 5 4
 0.267 0.253 0.113 0.421 0.248 0.251 0.198 0.052 0.061 0.330 0.206 0.155
 0.403 0.266 0.219 0.475 0.378 0.299 0.303 0.213 0.149 0.450 0.336 0.256
 0.419 0.354 0.303 0.477 0.417 0.390 0.365 0.298 0.169 0.518 0.442 0.355 
5 1 0 1 3 2 1 0 0 0 1 2 2
 3 4 3 6 5 5 2 2 2 4 4 4
 4 3 5 6 6 6 3 3 2 6 6 5
 0.311 0.210 0.201 0.388 0.343 0.227 0.180 0.092 0.073 0.355 0.221 0.148
 0.378 0.276 0.205 0.441 0.399 0.322 0.357 0.304 0.140 0.488 0.328 0.330
 0.489 0.337 0.277 0.478 0.447 0.316 0.439 0.277 0.252 0.456 0.435 0.372 
6 1 1 1 3 2 2 1 1 1 3 3 3
 3 3 2 4 5 4 2 2 1 3 2 3
 3 4 2 6 5 6 2 2 2 4 4 4
 0.208 0.300 0.103 0.396 0.365 0.236 0.233 0.062 -0.544 0.356 0.179
 0.210 0.413 0.292 0.284 0.505 0.492 0.401 0.333 0.261 0.223 0.364 0.467
 0.306 0.513 0.347 0.367 0.616 0.413 0.454 0.372 0.240 0.107 0.479 0.288
 0.399 
7 0 0 1 3 4 2 1 0 0 4 2 0
 1 2 0 6 5 6 2 1 0 5 4 4
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 5 2 2 6 6 5 2 5 3 6 6 6
 0.350 0.173 0.282 0.468 0.393 0.264 0.332 0.156 0.059 0.460 0.315 0.220
 0.478 0.403 0.143 0.461 0.457 0.341 0.380 0.213 0.143 0.527 0.431 0.401
 0.503 0.318 0.364 0.539 0.526 0.395 0.430 0.216 0.221 0.533 0.417 0.313 
8 1 1 1 3 4 3 3 3 1 4 2 2
 1 3 1 6 5 4 4 2 2 5 3 4
 2 2 2 6 5 4 5 4 4 6 6 5
 0.273 0.290 0.263 0.411 0.397 0.285 0.211 0.181 0.130 0.358 0.300 0.294
 0.458 0.347 0.359 0.540 0.449 0.331 0.411 0.246 0.206 0.509 0.384 0.450
 0.475 0.392 0.313 0.560 0.471 0.404 0.460 0.387 0.336 0.548 0.476 0.405 
9 0 1 0 3 2 3 2 1 1 5 3 2
 4 4 2 6 5 5 3 3 0 6 4 2
 5 4 0 5 6 6 4 2 2 6 6 4
 0.424 0.284 0.237 0.446 0.393 0.306 0.262 0.160 0.128 0.446 0.286 0.312
 0.377 0.398 0.273 0.572 0.453 0.301 0.381 0.304 0.361 0.489 0.376 0.333
 0.507 0.400 0.357 0.456 0.361 0.364 0.504 0.365 0.295 0.442 0.452 0.387 
10 0 0 0 3 0 0 0 0 0 1 0 0
 0 0 0 4 4 2 0 0 0 4 4 2
 4 2 0 6 4 5 4 3 2 6 6 6
 0.368 0.297 0.307 0.399 0.307 0.224 0.171 0.160 0.148 0.320 0.370 0.283
 0.440 0.368 0.305 0.373 0.289 0.308 0.338 0.296 0.201 0.386 0.364 0.258
 0.402 0.213 0.267 0.535 0.300 0.264 0.442 0.208 0.054 0.491 0.438 0.339 
11 1 0 2 2 2 1 1 1 0 3 3 3
 4 2 3 5 6 4 3 2 1 4 5 3
 5 5 3 6 6 5 4 5 4 6 6 5
 0.369 0.254 0.174 0.547 0.442 0.306 0.175 0.064 0.057 0.479 0.300 0.175
 0.474 0.255 0.322 0.593 0.444 0.409 0.395 0.176 0.193 0.516 0.441 0.212
 0.447 0.453 0.306 0.484 0.540 0.452 0.478 0.364 0.362 0.590 0.468 0.235 
12 2 0 1 4 3 4 2 0 0 3 2 0
 4 3 1 6 5 6 3 2 3 5 3 4
 6 5 3 6 6 6 4 2 2 6 5 5
 0.409 0.365 0.283 0.487 0.414 0.269 0.273 0.073 0.112 0.502 0.311 0.270
 0.490 0.459 0.250 0.571 0.511 0.403 0.487 0.372 0.282 0.546 0.411 0.432
 0.536 0.450 0.391 0.544 0.538 0.397 0.433 0.393 0.199 0.562 0.500 0.489 
13 1 0 2 3 2 2 1 0 0 3 3 1
 2 2 3 6 4 5 2 3 3 5 4 4
 4 4 4 6 6 6 4 4 4 5 6 6
 0.513 0.449 0.330 0.542 0.479 0.294 0.423 0.149 0.204 0.486 0.313 0.208
 0.467 0.479 0.277 0.594 0.456 0.466 0.467 0.463 0.292 0.564 0.511 0.382
 0.533 0.488 0.369 0.568 0.434 0.488 0.534 0.321 0.443 0.491 0.535 0.289 
14 1 0 1 3 3 4 1 0 0 3 3 2
 3 1 0 5 5 4 5 2 2 6 6 5
 5 3 3 6 6 6 4 3 2 6 6 6
 0.385 0.282 0.229 0.392 0.316 0.259 0.301 0.169 0.252 0.434 0.185 0.214
 0.507 0.318 0.240 0.562 0.562 0.330 0.398 0.357 0.344 0.550 0.420 0.342
 0.526 0.381 0.449 0.564 0.590 0.435 0.466 0.425 0.306 0.561 0.523 0.437 
15 1 1 1 3 3 2 1 1 1 2 2 1
 2 3 1 6 4 4 4 2 2 4 3 3
 3 3 3 6 6 6 3 5 2 5 5 5
 0.374 0.276 0.149 0.450 0.365 0.260 0.259 0.225 0.086 0.354 0.331 0.196
 0.456 0.340 0.341 0.484 0.462 0.400 0.330 0.354 0.255 0.475 0.431 0.356
 0.476 0.379 0.337 0.492 0.436 0.450 0.432 0.304 0.310 0.515 0.430 0.393 
16 3 3 2 5 3 3 2 2 2 4 4 3
 4 4 3 5 5 4 3 4 2 5 4 4
 5 5 5 6 5 5 5 4 4 6 5 5
 0.481 0.354 0.292 0.459 0.469 0.349 0.294 0.195 0.194 0.467 0.215 0.320
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 0.439 0.306 0.272 0.549 0.443 0.455 0.442 0.351 0.203 0.523 0.264 0.252
 0.565 0.438 0.350 0.508 0.398 0.430 0.456 0.306 0.347 0.478 0.433 0.409 
17 3 1 1 6 4 3 2 1 1 3 2 1
 5 5 2 6 6 5 4 1 1 5 5 4
 6 2 4 6 6 5 4 2 2 5 6 5
 0.317 0.211 0.230 0.403 0.327 0.287 0.257 0.141 0.181 0.438 0.205 0.181
 0.386 0.348 0.164 0.455 0.384 0.277 0.327 0.277 0.136 0.409 0.393 0.235
 0.396 0.378 0.275 0.438 0.344 0.356 0.450 0.236 0.307 0.551 0.358 0.266 
18 1 1 0 5 3 2 1 2 1 2 2 3
 3 2 3 6 6 6 3 2 0 5 4 4
 5 3 4 6 5 5 4 4 4 4 5 6
 0.373 0.261 0.200 0.459 0.381 0.272 0.250 0.149 0.155 0.365 0.219 0.195
 0.453 0.316 0.181 0.517 0.401 0.361 0.328 0.389 0.178 0.442 0.314 0.316
 0.511 0.382 0.387 0.509 0.453 0.357 0.373 0.273 0.248 0.465 0.347 0.302 
19 2 1 0 5 3 3 4 2 1 5 4 1
 4 4 5 6 5 5 5 3 3 6 6 4
 5 5 5 6 6 6 5 5 4 6 6 6
 0.472 0.447 0.452 0.512 0.532 0.464 0.158 0.307 0.234 0.417 0.278 0.174
 0.496 0.544 0.477 0.550 0.551 0.419 0.424 0.408 0.324 0.530 0.537 0.457
 0.579 0.553 0.558 0.576 0.508 0.568 0.505 0.362 0.189 0.540 0.564 0.371 
20 2 2 1 4 3 4 2 2 2 3 4 2
 4 3 2 6 6 6 3 1 3 5 5 4
 4 5 3 6 6 6 4 4 4 6 6 5
 0.464 0.385 0.271 0.418 0.440 0.326 0.400 0.196 0.141 0.466 0.231 0.181
 0.455 0.333 0.258 0.480 0.446 0.416 0.425 0.318 0.257 0.523 0.411 0.347
 0.522 0.412 0.303 0.519 0.395 0.374 0.438 0.388 0.280 0.552 0.454 0.399 
21 0 0 0 3 2 2 0 0 0 2 2 1
 2 3 1 5 4 4 2 2 1 5 4 4
 4 2 2 6 6 6 4 3 3 5 5 4
 0.446 0.360 0.300 0.511 0.355 0.250 0.382 0.158 0.066 0.417 0.390 0.338
 0.444 0.471 0.296 0.505 0.374 0.396 0.390 0.338 0.286 0.428 0.369 0.312
 0.478 0.358 0.343 0.488 0.483 0.413 0.512 0.337 0.302 0.437 0.450 0.449 
22 1 1 0 3 2 2 3 2 1 3 4 4
 3 3 2 6 6 4 3 4 1 5 5 4
 3 2 2 6 6 6 5 5 4 6 6 5
 0.362 0.238 0.269 0.533 0.378 0.404 0.245 0.207 0.019 0.298 0.228 0.294
 0.507 0.484 0.314 0.563 0.549 0.504 0.430 0.315 0.192 0.529 0.475 0.362
 0.534 0.469 0.324 0.586 0.459 0.492 0.513 0.350 0.172 0.569 0.465 0.443 
23 1 1 1 4 3 2 1 1 0 1 1 1
 3 2 2 5 5 5 1 1 1 2 2 2
 4 3 3 6 6 5 2 1 1 4 4 4
 0.306 0.249 0.231 0.372 0.308 0.306 0.257 0.073 0.089 0.393 0.323 0.207
 0.446 0.392 0.303 0.531 0.377 0.337 0.371 0.213 0.229 0.477 0.322 0.309
 0.437 0.346 0.377 0.455 0.335 0.367 0.341 0.255 0.284 0.447 0.413 0.335 
24 1 1 0 4 3 2 1 0 1 2 3 1
 3 2 2 6 4 5 4 2 0 4 5 3
 4 3 1 6 6 5 4 4 2 4 4 4
 0.265 0.132 0.207 0.303 0.290 0.273 0.174 0.049 0.052 0.348 0.217 0.170
 0.414 0.299 0.194 0.432 0.395 0.327 0.351 0.194 0.184 0.472 0.351 0.253
 0.421 0.237 0.299 0.445 0.378 0.344 0.376 0.299 0.115 0.491 0.411 0.336 
25 2 0 0 3 4 5 2 2 1 4 3 2
 5 3 2 6 5 5 5 4 1 6 5 4
 5 4 4 6 6 6 5 3 3 6 6 5
 0.328 0.263 0.192 0.425 0.335 0.341 0.262 0.155 0.209 0.396 0.325 0.217
 0.427 0.349 0.275 0.451 0.368 0.310 0.379 0.335 0.267 0.480 0.265 0.381
 0.458 0.390 0.330 0.487 0.433 0.366 0.423 0.373 0.286 0.478 0.394 0.333 
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26 2 1 1 3 2 2 1 0 0 3 2 1
 1 1 1 5 3 5 4 2 2 3 5 4
 4 3 2 6 6 5 4 2 2 5 4 4
 0.444 0.381 0.255 0.451 0.350 0.335 0.268 0.090 0.152 0.423 0.431 0.330
 0.546 0.455 0.384 0.547 0.465 0.417 0.348 0.267 0.273 0.545 0.545 0.420
 0.555 0.493 0.479 0.508 0.439 0.458 0.513 0.406 0.363 0.541 0.489 0.531 
27 1 2 2 4 3 4 3 1 2 4 3 3
 4 3 2 5 6 6 2 3 3 5 5 5
 5 5 5 6 6 6 3 4 3 5 5 5
 0.328 0.282 0.266 0.340 0.359 0.283 0.223 0.133 0.124 0.321 0.217 0.155
 0.372 0.257 0.276 0.397 0.396 0.328 0.282 0.167 0.189 0.382 0.340 0.294
 0.387 0.329 0.317 0.454 0.427 0.321 0.380 0.285 0.222 0.447 0.423 0.309 
28 0 0 0 3 0 0 0 0 0 0 0 0
 2 0 0 6 4 3 1 1 0 6 5 4
 2 5 2 6 6 5 4 4 1 6 6 6
 0.389 0.381 0.356 0.516 0.481 0.262 0.275 0.280 0.239 0.412 0.392 0.285
 0.466 0.436 0.344 0.511 0.505 0.481 0.423 0.398 0.325 0.451 0.481 0.340
 0.554 0.436 0.393 0.532 0.531 0.513 0.444 0.411 0.306 0.507 0.471 0.378 
29 2 2 2 3 3 3 3 3 2 3 3 3
 3 3 3 5 5 4 4 3 3 5 4 5
 5 4 3 6 6 6 4 4 3 6 5 5
 0.357 0.250 0.277 0.472 0.392 0.310 0.254 0.219 0.144 0.362 0.326 0.204
 0.455 0.333 0.278 0.464 0.393 0.317 0.399 0.313 0.241 0.468 0.393 0.358
 0.449 0.443 0.290 0.514 0.472 0.425 0.472 0.378 0.310 0.453 0.422 0.306 
30 1 0 0 2 1 1 0 0 0 1 1 0
 3 1 3 6 5 5 0 2 0 5 3 4
 2 3 4 6 6 5 3 2 1 6 5 5
 0.244 0.167 0.155 0.386 0.240 0.037 0.465 0.433 0.216 0.267 0.441 0.147
 0.327 0.279 0.231 0.430 0.357 0.360 0.322 0.145 0.340 0.285 0.328 0.472
 0.388 0.387 0.279 0.221 0.187 0.235 0.200 0.090 0.418 0.229 0.112 0.133 
31 2 2 1 3 3 2 2 2 0 3 1 3
 4 3 3 6 6 6 4 3 4 4 5 3
 6 5 4 6 6 6 5 4 2 6 6 5
 0.425 0.391 0.329 0.517 0.499 0.387 0.292 0.226 0.112 0.411 0.331 0.274
 0.479 0.387 0.397 0.538 0.489 0.487 0.451 0.318 0.249 0.540 0.452 0.368
 0.487 0.424 0.484 0.562 0.492 0.463 0.450 0.336 0.280 0.547 0.427 0.448 
32 2 2 2 4 4 3 2 3 2 4 3 3
 4 4 3 6 6 5 3 3 3 5 5 4
 6 4 4 6 6 6 6 4 4 6 6 5
 0.329 0.285 0.179 0.451 0.402 0.286 0.229 0.137 0.080 0.359 0.279 0.253
 0.430 0.356 0.329 0.508 0.474 0.425 0.359 0.289 0.227 0.485 0.409 0.314
 0.470 0.420 0.360 0.514 0.501 0.452 0.417 0.393 0.309 0.548 0.494 0.444 
33 2 0 0 5 2 2 0 1 0 5 4 2
 6 3 2 6 6 4 3 0 0 6 6 5
 5 4 4 6 6 6 4 4 4 6 5 5
 0.387 0.383 0.267 0.453 0.419 0.376 0.318 0.263 0.268 0.390 0.199 0.239
 0.335 0.416 0.228 0.519 0.422 0.388 0.433 0.259 0.264 0.475 0.419 0.283
 0.454 0.418 0.242 0.509 0.395 0.487 0.492 0.274 0.329 0.477 0.456 0.484 
34 1 1 1 4 3 4 1 1 1 2 1 2
 2 2 1 5 5 5 2 1 2 4 4 4
 3 4 2 6 6 6 3 3 2 5 4 5
 0.311 0.199 0.161 0.356 0.279 0.302 0.188 0.080 0.078 0.316 0.230 0.147
 0.364 0.320 0.233 0.399 0.367 0.277 0.290 0.214 0.151 0.409 0.315 0.273
 0.351 0.328 0.237 0.438 0.382 0.333 0.352 0.237 0.206 0.451 0.367 0.347 
35 2 2 1 3 2 2 2 1 1 3 3 2
 4 2 2 6 5 4 3 3 2 5 4 4
 4 4 3 6 6 6 4 3 3 6 5 4
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 0.352 0.235 -0.035 0.380 0.320 0.135 0.304 0.163 0.061 0.391 0.221
 0.137 0.387 0.380 0.298 0.415 0.393 0.397 0.488 0.401 0.145 0.440 0.351
 0.293 0.514 0.464 0.319 0.489 0.475 0.383 0.406 0.320 0.181 0.497 0.369
 0.427 
36 1 2 1 4 3 4 2 2 1 3 3 3
 3 2 2 6 6 5 5 3 3 6 5 5
 3 4 4 6 6 6 4 4 4 6 5 6
 0.381 0.325 0.239 0.489 0.386 0.346 0.242 0.211 0.174 0.394 0.263 0.276
 0.457 0.361 0.333 0.524 0.491 0.473 0.442 0.235 0.289 0.505 0.446 0.279
 0.521 0.435 0.360 0.556 0.484 0.508 0.446 0.420 0.267 0.506 0.474 0.389 
37 1 0 3 4 3 3 1 1 0 2 2 1
 4 2 2 6 5 5 1 2 3 4 2 2
 5 5 4 6 6 6 3 4 3 6 5 5
 0.366 0.480 0.356 0.385 0.455 0.525 0.410 0.242 0.279 0.343 0.370 0.321
 0.436 0.475 0.324 0.354 0.522 0.503 0.413 0.329 0.292 0.516 0.467 0.513
 0.436 0.482 0.457 0.404 0.429 0.437 0.470 0.419 0.337 0.449 0.500 0.512 
38 2 1 1 3 2 2 2 1 1 3 3 2
 4 2 3 5 4 5 2 2 2 4 3 3
 4 4 5 6 6 6 4 2 3 6 6 4
 0.317 0.189 0.150 0.430 0.197 0.207 -0.031 0.168 -0.049 0.320
 0.230 0.090 0.410 0.245 0.164 0.550 0.358 0.147 0.299 0.165 0.151 0.512
 0.250 0.202 0.442 0.377 0.318 0.368 0.499 0.443 0.389 0.244 0.020 0.508
 0.337 0.236 
39 3 2 3 4 5 4 3 3 2 4 5 4
 5 3 4 6 6 6 5 3 3 6 6 5
 5 5 6 6 6 6 5 6 5 6 6 6
 0.246 0.176 0.068 0.353 0.287 0.181 0.178 0.069 0.022 0.285 0.170 0.132
 0.283 0.295 0.216 0.254 0.242 0.225 0.220 0.189 0.118 0.278 0.268 0.269
 0.272 0.244 0.228 0.286 0.397 0.262 0.353 0.263 0.265 0.316 0.224 0.255 
40 0 1 0 3 2 2 2 1 0 3 3 2
 2 1 1 5 5 3 2 3 2 5 4 3
 4 3 3 6 6 5 3 2 3 6 5 4
 0.439 0.329 0.273 0.465 0.387 0.333 0.311 0.091 0.079 0.404 0.291 0.234
 0.482 0.453 0.365 0.485 0.479 0.479 0.416 0.302 0.291 0.515 0.347 0.300
 0.517 0.429 0.355 0.498 0.429 0.515 0.443 0.440 0.143 0.484 0.535 0.470 
41 0 1 1 4 3 2 1 2 2 3 3 3
 1 2 1 4 4 4 2 3 2 4 4 4
 4 2 3 6 6 5 3 3 3 5 5 4
 0.356 0.290 0.258 0.394 0.296 0.391 0.273 0.177 0.082 0.342 0.259 0.264
 0.372 0.289 0.233 0.493 0.379 0.432 0.357 0.267 0.082 0.475 0.391 0.324
 0.463 0.328 0.316 0.551 0.475 0.359 0.375 0.230 0.286 0.472 0.462 0.308 
42 0 0 0 4 1 0 0 0 0 1 0 1
 0 0 0 5 2 2 3 1 1 5 3 3
 3 3 0 6 6 5 3 1 2 6 6 5
 0.378 0.280 0.203 0.440 0.308 0.316 0.262 0.185 0.131 0.396 0.271 0.223
 0.472 0.384 0.329 0.510 0.449 0.409 0.372 0.317 0.249 0.486 0.370 0.317
 0.502 0.421 0.375 0.540 0.408 0.438 0.430 0.352 0.227 0.469 0.415 0.362 
43 3 0 1 3 3 2 0 0 1 3 3 2
 0 2 3 6 4 4 3 0 0 1 3 4
 5 0 3 6 6 4 3 1 2 5 5 0
 0.470 0.392 0.422 0.527 0.512 0.450 0.310 0.272 0.203 0.496 0.429 0.322
 0.514 0.465 0.393 0.528 0.521 0.480 0.481 0.414 0.325 0.540 0.472 0.396
 0.550 0.528 0.442 0.523 0.468 0.485 0.502 0.461 0.446 0.520 0.492 0.481 
44 2 2 2 1 1 1 2 1 1 3 2 2
 4 3 2 4 6 5 2 3 2 3 4 4
 5 4 2 5 6 6 3 3 2 5 5 4
 0.316 0.227 0.205 0.427 0.306 0.223 0.275 0.212 0.107 0.388 0.300 0.228
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 0.467 0.352 0.292 0.488 0.389 0.368 0.416 0.297 0.191 0.472 0.376 0.342
 0.486 0.375 0.350 0.558 0.460 0.358 0.411 0.389 0.247 0.505 0.437 0.395 
45 2 1 1 3 1 1 2 1 0 4 3 2
 3 3 3 6 5 3 4 2 3 5 5 3
 4 4 3 6 5 6 5 4 3 6 5 5
 0.243 0.214 0.165 0.363 0.268 0.245 0.185 0.175 0.118 0.293 0.220 0.183
 0.349 0.317 0.267 0.483 0.414 0.349 0.318 0.208 0.132 0.426 0.368 0.232
 0.411 0.350 0.309 0.506 0.461 0.408 0.364 0.309 0.265 0.500 0.458 0.384 
46 3 1 2 3 2 2 2 1 1 3 2 2
 4 4 4 5 5 5 4 3 3 6 3 4
 6 5 4 6 5 6 5 4 3 6 5 5
 0.458 0.328 0.414 0.535 0.553 0.349 0.253 0.343 0.372 0.386 0.430 0.385
 0.443 0.387 0.373 0.458 0.548 0.389 0.432 0.475 0.326 0.437 0.435 0.507
 0.515 0.455 0.384 0.528 0.454 0.493 0.360 0.522 0.322 0.403 0.409 0.574 
47 1 0 0 1 1 1 1 1 0 3 2 2
 2 3 1 6 5 5 3 3 2 5 4 5
 3 4 3 6 6 6 4 3 2 6 6 5
 0.349 0.169 0.317 0.423 0.345 0.345 0.371 0.216 0.026 0.278 0.311 0.342
 0.353 0.325 0.320 0.476 0.480 0.356 0.375 0.307 0.210 0.398 0.327 0.313
 0.316 0.349 0.272 0.438 0.362 0.342 0.336 0.275 0.134 0.508 0.328 0.271 
;; 
 
proc print data=widePUPIL; 
run; 
/*It restructures a wide dataset to a long dataset*/ 
DATA longPUPIL; 
  SET widePUPIL; 
  ARRAY ascale(1:36) scale1 - scale36 ; 
  ARRAY ar(1:36) r1-r36; 
  DO condition = 1 to 36 ; 
    scale = ascale(condition); 
 r = ar(condition); 
    OUTPUT; 
  END; 
  Drop scale1-scale36; 
  DROP r1 - r36 ; 
RUN; 
PROC PRINT DATA=longPUPIL ; 
RUN ; 
 
/*One needs to do the z transformation, if the variables are correlations.  
In this case, the variables are correlations. The correlations between the 
subjective responses and pupil for EACH subject are computed, and analyzed.*/ 
  
/*This computes Pearson correlation coefficients and z-transformed 
correlation coefficients (so that the coefficients are not skewed).One wants 
to know only the correlation between the subjective response (scale) and the 
change in pupil diameter(delta). */ 
 
proc corr data=longPUPIL outp = newdataset Fisher(biasadj=no); 
var r; 
with scale; 
by subjectID; 
run; 
 
proc print data=newdataset; 
run; 
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proc plot data= longPupil; 
plot r * scale = '+'; 
run; 
 
data temp; 
set newdataset; 
if _TYPE_ = 'MEAN' then _NAME_ = 'mean'; 
if _TYPE_ = 'STD' then _NAME_ = 'STD'; 
if _TYPE_ = 'N' then _NAME_ = 'n'; 
run; 
 
proc print data=temp; 
run; 
proc sort data=temp; 
by _NAME_; 
run; 
 
/*One wants to output correlation coefficients between scale and delta only*/ 
data temp2; 
set temp; 
if _NAME_ = 'scale';  
output; 
run; 
proc print data=temp2; 
run; 
/* "To compute the correlation for each subject, z transform them, compute 
and test the mean, and convert the mean back to the original metric." */ 
/*It computes the Fisher's z-transformation "manually" */ 
data temp2; 
set temp2; 
rz = .5*log((1+r)/(1-r)); 
run; 
proc print data=temp2; 
run; 
 
/*This finds the mean correlation coefficient*/ 
proc means data=temp2; 
var rz; 
output out=means; 
run; 
/*This checks whether it is significantly different from 0. A simple t-test*/ 
proc univariate data=temp2; 
var rz; 
run; 
 
/*This is a conversion back to the original metric*/ 
data means; 
set means; 
if _STAT_ = 'MEAN'; 
orig1 = ((exp(1)**(rz*2)-1)/(exp(1)**(rz*2)+1)); 
run; 
 
proc print data=means; 
run; 
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Appendix W – EMG data problems discussion 

For each subject 36 files (12 seconds each) were recorded – one for each experimental 

condition. Each collected EMG file consisted of four columns of data: the elapsed time, the sync 

value, the voltage on channel 1 (right eye data), and the voltage on channel 2 (left eye data).  

The elapsed time indicated the time between the start of the EMG recording and 

receiving the data from the Focus EMG Machine measured on the computer that ran the controls 

software. Note that the elapsed time was not the device’s time. Every time the laptop received 

600 data points from the EMG Machine, it recorded the elapsed time. Since data were 

transmitted in blocks, multiple data points had the same elapsed time, which to the data 

recording module on the host computer appeared like simultaneous data points. Therefore, 

elapsed time did not constitute a unique time stamp that could be used to align EMG data with 

other data signals. 

The sync value was read directly from the EMG device and appeared to be a count of 

recorded data points. Once the sync value reached its maximum value of 2047, it was reset to 

zero (figure W1). In addition, since the constant sampling rate of 20 KHz was known, the sync 

value was equivalent to the device’s time.  

The main idea was to acquire and analyze the MAC indices (equation (3-2)) for glare and 

no-glare states (section 3.9). Unlike in the eye tracking data, in the EMG data the presence of 

physiological responses was not easily identifiable. After an initial examination, it was unclear 

which parts of the EMG signal actually represented the occurrence of glare source flashes.  
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Figure W1. Sync values for one subject for one condition (Subject ID13, condition 6) 

The EMG recording was programmed to start at 46.8 seconds (the 39th time step) (Figure 

3-34), and stop at 58.8 seconds (the 49th time step) (12 seconds). This accurate timing should 

have allowed the alignment of all data signals, and thus, the computation of the MAC indices for 

the correct portion of the signal, i.e. during both no-glare and glare states. In Figure W2, the 

expected timing of the events is shown. Since a time step of 1.2 seconds was used, flashes were 

expected at 2.4-3.6 seconds, 4.8-6 seconds, and 7.2-8.4 seconds. In other words, since the EMG 

sampling rate was 20 KHz, flashes were expected during the following data point ranges: 48K-

72K, 96K-120K, and 144K-168K. However, the files were inconsistent in the number of data 

points recorded, in other words, in the duration of the recordings (for example, Figure W3 and 

W4 – approximately 250,000 data points versus 215,000).  
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Figure W2. Expected timing of the EMG recording during one lighting condition 

 

Figure W3. Number of data points in the EMG file for Subject ID5 condition 11 
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Figure W4. Number of data points in the EMG file for Subject ID18 condition 11 

One reason for the variable number of sample points was missing data due to dropped 

data packages (see discussion below). The other reason was that delays could be introduced by 

aperture adjustments and inconsistent communication speed between the devices and the 

software. Even if the recording duration of the files were consistent, an error when compared to 

the expected timing would still occur. Each EMG file was recorded for 12 seconds. However, 

this did not mean that the first flash actually happened at precisely 2.4 seconds, because the 

aperture had to be adjusted to the setting specified for the condition under test. A large 

movement of the iris (fixation point to 10-4 sr solid angle state) takes more time to complete, and 

the introduced delay had the potential of shifting the location of the flash to a later point in time. 

The controls software’s program flow did not specifically account for such hardware delays and 

executed all events strictly sequentially. Until the aperture adjustment was completed, the glare 

source would not flash, and, therefore, the flash could be shifted in time. This brought into 
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question the exact timing of the stimuli. If one wants to calculate the MAC index during the first 

flash, the timing of when the flash actually occurred was crucial to know, which was not clear 

because of this timing issue.  

A way to match the EMG signal with the flashes was attempted using the available eye 

tracking data. Despite the fact that the eye tracking files were manually recorded and were not 

accurately synchronized with the discomfort glare software due to human error, one could infer 

the occurrence of the flashes. In the eye tracking data flashes were clearly visible, which could 

be identified as a decrease in pupil diameter after accounting for the constriction latency of the 

pupil.  

Eye tracking data were consistent in the number of total data points (720) across all files. 

If one could measure a number of points between the actual flashes, one could map them to time 

(1.2 seconds = 72 data points) (Figure 3-69).  A translation of the number of data points into 

seconds allowed the creation of overlays of the eye tracking data over the EMG data as shown in 

Figure W5. Note, however, that the shown signals were not synchronized in time, which would 

have to be aligned in the next step. One might consider identifying and aligning the blinks. 

However, after an initial inspection of multiple EMG files, it was found that not all files exhibit 

easily identifiable blinks. In addition, missing data caused another problem with alignment, 

which leads to the second issue explained below. 
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FigureW5. Pupil data file overlaid on the EMG data (not synchronized in time) (subject ID 

4, condition 28) 

Unexpected pauses in the processing thread of the controls software affected the EMG 

data (Figure W6). It resulted in data loss between 10% and 20% because the chosen data 

structure for storing the EMG recordings caused data to be overwritten (in this case a hash data 

structure was used with the time stamp as hash key). Because the used hash key (the data’s time 

stamps in this case) was not unique, data was overwritten when multiple data packages were 

received with the same time stamp. For example, if a data package was recorded at 12 

milliseconds, then it would be stored at a location in the hash corresponding to 12 milliseconds. 

If another data package arrived at 12 milliseconds, it would overwrite previously stored data. The 

fact that there were randomly missing values meant that the use of MAC indices, which sum up a 

fixed number of values, would not produce reliable results since it is not a robust measure with 
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respect to missing data points. In other words, the MAC index computed over 24,000 data points 

(1.2 seconds) was not guaranteed to capture the entire duration of the flash. 

 

Figure W6. Example of the acquired EMG data plotted over elapsed time (Subject ID4 

condition 28) 

The final issue with the data was the uncertainty of whether the data were indeed raw, 

whether the desired processing on the device (such as filtering out 60 Hz components) was 

applied before transmitting data to the controls software, or whether an unknown processing step 

was performed on the device. Moreover, since third party development was not supported, the 

quality of the EMG data was unknown. 

Berman and others indicated the importance of filtering out 60 Hz power line artifacts 

and frequencies lower than 10 Hz, because they contribute to a confounding response (1994). For 

the final recordings, low/high pass and notch filter settings were applied to the EMG data before 

data were transmitted and recorded. These filters are typically applied in the original EMG 
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software that was shipped with the device. However, the question of whether the filters were 

actually applied was raised, when the following examination of the data was done. An FFT 

transform, which breaks down the signal into its sinusoidal temporal frequency components, was 

applied to the recorded signal in Matlab (Figure W7). As one can see from the figure, there was a 

dominant 60 Hz component in a supposedly processed file – the notch filter which filters out the 

60 Hz component was clearly not applied to the signal on the device. Therefore, it is not clear 

which, if any, filters were applied prior to the transmission of data to the controls software. 

 

Figure W7. EMG file for one condition displayed as a frequency power spectrum  

The initial idea was to integrate the EMG recordings into the glare software, such that 

these collected data could be compared to the subjective responses as well as the pupil data. 

Because of the uncertainty in the quality of the recorded EMG data, these data were not used in 

this research.  
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